K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )

\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)

\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)

\(\Leftrightarrow x-1=289\)

\(\Leftrightarrow x=289+1=290\)

vậy x= 290 là nghiệm của phương trình a

b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )

\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)

vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)

c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )

\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)

\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0

\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)

\(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)

\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)

vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

6 tháng 9 2017

2, \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)

\(\Leftrightarrow-\sqrt{x+1}=-17\)

\(\Leftrightarrow x+1=289\left(x>0\right)\)

\(\Leftrightarrow x=288\)

Vậy x = 288

3, \(-5x+7\sqrt{x}+12=0\)

\(\Leftrightarrow-5x+12\sqrt{x}-5\sqrt{x}+12=0\)

\(\Leftrightarrow\sqrt{x}\left(12-5\sqrt{x}\right)+\left(12-5\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(12-5\sqrt{x}\right)=0\)

Do \(\sqrt{x}+1>0\)

\(\Rightarrow12-5\sqrt{x}=0\Leftrightarrow x=\dfrac{144}{25}\)

Vậy...

6 tháng 9 2017

1. (Đề có chút sai sai nên mình sửa lại nhé) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)

\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)

\(\Leftrightarrow x=65\left(tm\right)\)

Vậy pt đã cho có nghiệm x=65.

2. \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)

(ĐK: \(x\ge-1\))

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9\left(x+1\right)}+3\sqrt{x+1}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)

\(\Leftrightarrow-\sqrt{x+1}=-17\)

\(\Leftrightarrow\sqrt{x+1}=17\)

\(\Leftrightarrow x+1=289\)

\(\Leftrightarrow x=288\left(tm\right)\)

Vậy \(S=\left\{288\right\}\)

3. \(-5x+7\sqrt{x}+12=0\) (ĐK: \(x\ge0\))

\(\Leftrightarrow5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow5x+5\sqrt{x}-12\sqrt{x}-12=0\)

\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\5\sqrt{x}-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-1\left(vô.lý\right)\\5\sqrt{x}=12\end{matrix}\right.\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\)

Vậy pt có nghiệm \(x=\dfrac{144}{25}\)

1 tháng 7 2021

a, ĐKXĐ : \(x\ge1\)

Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x=290\left(TM\right)\)

Vậy ....

b, ĐKXĐ : \(x\ge3\)

Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )

Vậy ..

a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow x-1=17^2=289\)

hay x=290

Vậy: S={290}

b) Ta có: \(x-7\sqrt{x-3}+9=0\)

\(\Leftrightarrow x-7\sqrt{x-3}=-9\)

\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)

Vậy: S={19;12}

20 tháng 10 2018

a,

\(\sqrt{1-4x+4x^2}=5\\ \sqrt{\left(2x-1\right)^2}=5\\ \left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

20 tháng 10 2018

b,

\(\sqrt{4-5x}=12\\ 4-5x=144\\ x=-28\)

2 tháng 9 2021

\(a.\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)( x lớn hơn hoặc =1)
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}\)+2=0
\(\sqrt{x-1}\left(1+\sqrt{4}-\sqrt{25}\right)=-2\)
\(\sqrt{x-1}\left(1+2-5\right)=-2\)
\(\sqrt{x-1}.\left(-2\right)=-2\)
\(\sqrt{x-1}=-2.2\)
\(\sqrt{x-1}-4\)(ko thỏa mãn)
b)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9\left(x-1\right)}+24\dfrac{\sqrt{x-1}}{8}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.3\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)\sqrt{x-1}=-17\)
\(7\sqrt{x-1}=-17\)
\(\sqrt{x-1}=-\dfrac{17}{7}\)(ko thỏa mãn căn bậc 2 ko có số âm)

a: Ta có: \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow x-1=1\)

hay x=2

5 tháng 8 2018

\(3x-7\sqrt{x}+4=0\)

\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}\)

6 tháng 8 2018

ĐK: \(x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=>  \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\sqrt{\frac{1}{64}\left(x-1\right)}=-17\)

<=>   \(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=> \(-\sqrt{x-1}=-17\)

<=>   \(x-1=17^2\)

<=>   \(x=290\)
Vậy....

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$

a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)

\(=14\sqrt{2x}+30\)

b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)

\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)

\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)