K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
26 tháng 11 2021

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

NV
26 tháng 11 2021

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

13 tháng 3 2017

bài 1:

b) đề như vầy hả :\(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)x=2\left(xy-1\right)\left(1\right)\\4x^2+y^2+2x-y-6=0\left(2\right)\end{matrix}\right.\)

\(Pt\left(1\right)\Leftrightarrow x^2y+xy^2-x-y-2xy+2=0\)

\(\Leftrightarrow xy\left(x+y\right)-\left(x+y\right)-2\left(xy-1\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy-1\right)-2\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x+y-2\right)=0\Leftrightarrow\left[{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)

*xét \(xy=1\Leftrightarrow x=\dfrac{1}{y}\)thế vào Pt (2):\(\dfrac{4}{y^2}+y^2+\dfrac{2}{y}-y-6=0\)

\(\Leftrightarrow\dfrac{4+2y}{y^2}+\left(y+2\right)\left(y-3\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(\dfrac{2}{y^2}+y-3\right)=0\)

\(\Leftrightarrow\left(y+2\right)\left(y^3-3y^2+2\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(y-1\right)\left(y^2-2y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=1\\y=1-\sqrt{3}\\y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\\x=-\dfrac{1+\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}\end{matrix}\right.\)

* xét x+y=2(tương tự thay x=2-y vào Pt (2))

câu 2:

ta đưa về PT ẩn x:\(x^2-x\left(y+1\right)+y^2-y-2=0\)

Pt phải có nghiệm ,xét \(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)

\(\Leftrightarrow y^2-2y-3\le0\Leftrightarrow\left(y+1\right)\left(y-3\right)\le0\)

\(\Leftrightarrow-1\le y\le3\).

vì x,y thuộc Z ,lần luợt thay các giá trị của y vừa tìm được vào PT ban đầu ta được các cặp (x,y) t/m là (0;-1);(-1;0);(2;0);(0;2);(3;2);(2;3)

bài 3:

DKXĐ:\(\left\{{}\begin{matrix}2x^2-x\ge0\\2x-x^2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\\0\le x\le2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}\le x\le2\end{matrix}\right.\)

bình phương , self study

13 tháng 3 2017

chắc z đó

4 tháng 9 2016

Ptrình này vô nghiệm bn ạ

19 tháng 8 2019

ráng làm nốt rồi đi ngủ thoyy

1.

a) ĐK: \(x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)

Vậy...

b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)

Vậy...

c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

Nhân cả 2 vế với \(\sqrt{2}\) ta được :

\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)

Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)

2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)

Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)

Tương tự 2 trường hợp còn lại ta đều được \(B=0\)

Vậy \(B=0\)

19 tháng 8 2019

yeu

17 tháng 8 2015

a/ x= \(\sqrt{3}-2\)

b/ ko tồn tại nghiệm số thực

x \(\in\phi\)

6 tháng 9 2020

a)\(\sqrt{\left(x^2-4x+1\right)}-2=2x\)

\(\Leftrightarrow\sqrt{\left(x^2-4x+1\right)}=2x+2\)

ĐKXĐ : \(2x+2\ge0\Leftrightarrow x\ge-1\)

Bình phương hai vế

\(\Leftrightarrow x^2-4x+1=\left(2x+2\right)^2\)

\(\Leftrightarrow x^2-4x+1=4x^2+8x+4\)

\(\Leftrightarrow4x^2+8x+4-x^2+4x-1=0\)

\(\Leftrightarrow3x^2+12x+3=0\)(*)

\(\Delta=b^2-4ac=\left(12\right)^2-4\cdot3\cdot3=144-36=108\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-12+\sqrt{108}}{6}=-2+\sqrt{3}=\sqrt{3}-2\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-12-\sqrt{108}}{6}=-2-\sqrt{3}=-\sqrt{3}-2\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy \(\sqrt{3}-2\)tmđk

Vậy phương trình có nghiệm duy nhất là x = \(\sqrt{3}-2\)

b) \(\sqrt{\left(4-x+2x^2\right)}=x-3\)

ĐKXĐ : \(x-3\ge0\Leftrightarrow x\ge3\)

Bình phương hai vế

\(\Leftrightarrow2x^2-x+4=\left(x-3\right)^2\)

\(\Leftrightarrow2x^2-x+4=x^2-6x+9\)

\(\Leftrightarrow2x^2-x+4-x^2+6x-9=0\)

\(\Leftrightarrow x^2+5x-5=0\)(*)

\(\Delta=b^2-4ac=5^2-4\cdot1\cdot\left(-5\right)=25+20=45\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-5+\sqrt{45}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-5-\sqrt{45}}{2}\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy hai nghiệm không thỏa mãn

Vậy phương trình vô nghiệm

3 tháng 9 2019

fsđsđf

3 tháng 9 2019

Em chỉ mới nghĩ ra được câu a thôi.

a) ĐK: x >1/4

PT<\(\Leftrightarrow\) \(2a^2-\left(4x-1\right)a+2x-1=0\)

\(\Leftrightarrow\left(1-2a\right)\left(2x-a-1\right)=0\)