Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm
Giao điểm của hai đồ thị hàm số là M x 1 ; y 1 , N x 2 ; y 2 với x 1 , x 2 là nghiệm phương trình (1). Do đó
Chọn đáp án B.
Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)
Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).
Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)
Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)
Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)
\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)
Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=1+2t\\y=1+2t\\z=-1+t\end{matrix}\right.\)
Gọi \(M\left(1+2t;1+2t;-1+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2t-5;2t+1;t-1\right)\\\overrightarrow{BM}=\left(2t+1;2t+1;t+5\right)\end{matrix}\right.\)
\(\Rightarrow P=\sqrt{\left(2t-5\right)^2+\left(2t+1\right)^2+\left(t-1\right)^2}+\sqrt{\left(2t+1\right)^2+\left(2t+1\right)^2+\left(t+5\right)^2}\)
\(=\sqrt{9t^2-18t+27}+\sqrt{9t^2+18t+27}\)
\(=\sqrt{\left(3-3t\right)^2+18}+\sqrt{\left(3+3t\right)^2+18}\)
\(\ge\sqrt{\left(3-3t+3+3t\right)^2+4.18}=6\sqrt{3}\)
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Mặt phẳng (P) qua A và vuông góc d có phương trình:
\(2\left(x-1\right)+2\left(y+1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow2x+2y+z-1=0\)
Đường thẳng d' song song d và đi qua B (nên d' vuông góc (P)) có dạng:
\(\left\{{}\begin{matrix}x=4+2t\\y=2+2t\\z=-2+t\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm C của d' và (P) thỏa mãn:
\(2\left(4+2t\right)+2\left(2+2t\right)-2+t-1=0\Rightarrow t=-1\Rightarrow C\left(2;0;-3\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(1;1;-4\right)\Rightarrow\) là 1 vtcp của \(\Delta\Rightarrow\) D là đáp án đúng
Đáp án B
Vì M là hình chiếu vuông góc của I trên ∆
Khi đó
Vậy M(5;-2;-5) hoặc M(5;-8;1) => bc =10
Mặt cầu tâm \(I\left(-1;2;2\right)\) bán kính \(R=3\), gọi \(r\) là bán kính đường tròn đáy và \(h\) là đường cao nón
Thực hiện mặt cắt qua trục khối nón ta được như hình bên dưới:
Đặt \(\widehat{MIH}=x\Rightarrow\widehat{NIK}=180^0-2x\)
\(r=MH=R.tanx=3tanx\)
\(IN=\dfrac{IK}{cos\left(180^0-2x\right)}=\dfrac{3}{-cos2x}\Rightarrow h=IN+IH=3-\dfrac{3}{cos2x}\)
\(V=\dfrac{1}{3}\pi R^2h=9\pi.tan^2x.\left(1-\dfrac{1}{cos2x}\right)=9\pi.tan^2x\left(1-\dfrac{1+tan^2x}{1-tan^2x}\right)\)
Đặt \(tan^2x=t>0\) và \(f\left(t\right)=t\left(1-\dfrac{1+t}{1-t}\right)=\dfrac{2t^2}{t-1}\Rightarrow f'\left(t\right)=\dfrac{2\left(t^2-2t\right)}{\left(t-1\right)^2}=0\Rightarrow t=2\)
\(f\left(t\right)_{min}=f\left(2\right)\Rightarrow V_{min}\) khi \(tan^2x=2\Rightarrow cos2x=\dfrac{1-tan^2x}{1+tan^2x}=-\dfrac{1}{3}\)
\(\Rightarrow IN=\dfrac{3}{-cos2x}=9\)
Do N thuộc \(\Delta\) nên tọa độ có dạng: \(N\left(2-t;-1+t;2+3t\right)\Rightarrow\overrightarrow{IN}=\left(3-t;t-3;3t\right)\)
\(\Rightarrow2\left(t-3\right)^2+9t^2=81\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{21}{11}\left(loại\right)\end{matrix}\right.\) \(\Rightarrow N\left(-1;2;8\right)\)
Mặt phẳng (P) nhận \(\overrightarrow{IN}\) là 1 vtpt và cách I một khoảng bằng \(R=3\), bạn tự hoàn thành phần còn lại
Lời giải:
Phương trình hoành độ giao điểm:
\(x+1-\frac{2x+4}{x-1}=0\)
\(\Leftrightarrow (x+1)(x-1)-(2x+4)=0\)
\(\Leftrightarrow x^2-2x-5=0\) \((1)\)
Với $M,N$ là giao điểm của 2 ĐTHS thì hoành độ của $M,N$ sẽ là hai nghiệm của PT $(1)$
Áp dụng hệ thức Viete, với \(x_M,x_N\) là hai nghiệm của (1) thì:
\(x_M+x_N=2\)
Khi đó, hoành độ của trung điểm $I$ của $MN$ là:
\(x_I=\frac{x_M+x_N}{2}=\frac{2}{2}=1\)
Đáp án B
Cảm ơn ạ