Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có y ' = 3 a − 2 b b x + 3 2 với ∀ x ≠ − 3 b
Theo đề bài ta có hệ phương trình − 4 = − 2 a + 2 − 2 b + 3 7 = 3 a − 2 b − 2 b + 3 2
⇔ a + 4 b = 7 3 a − 2 b = 7 3 − 2 b 2 ⇔ a + 4 b = 7 3 a − 2 b = 7 3 − 2 b 2
⇔ a = 7 − 4 b 3 7 − 4 b − 2 b = 7 3 − 2 b 2 ⇔ a = 7 − 4 b 28 b 2 − 70 b + 42 = 0
⇔ a = 7 − 4 b b = 1 t / m b = 3 2 l o a i
Khi b = 1 thì a = 3 ⇒ a − 3 b = 0 .
Đáp án C
Để (C) cắt d tại 2 điểm phân biệt có hoành độ dương thì PT f(x) = 0 có 2 nghiệm dương phân biệt khác 3
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án C
Phương pháp :
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2
y = f’(m – 2)(x – m +2)+y(m – 2) (d)
+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1
+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.
Cách giải: TXĐ: D = R\ {–2}
Ta có
=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là:
Đồ thị hàm số y = x - 1 x + 2 có đường TCN y = 1và tiệm cậm đứng x = –2
Đáp án A