K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

k minh minh giai cho

27 tháng 2 2018

a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có

              BM = MC ( M là t/điểm của BC)

             góc cmk = góc bmh ( đối đỉnh)

          => t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )

     => góc H = góc K mà chúng ở vị trí slt => BH // KC

                => BH = CK ( 2 cạnh tuowg ứng)

b) tương tự câu a

27 tháng 2 2018

Bạn lam hôn tớ câu b c d

a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

CB chung

\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b) Ta có: ΔBHC=ΔCKB(cmt)

nên HC=KB(hai cạnh tương ứng)

Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

c) Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

d) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

nên OB=OC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)

4 tháng 2 2021

tham khảo nha

12 tháng 1 2018

Xàm lol.Người khác cần you k ak?Hay you cần bài làm?

24 tháng 1 2018

hihi dễ quá ko thèm làm luôn hihihi

24 tháng 3 2020

A B C M K H

a)

+)Có \(\hept{\begin{cases}AM\perp BH\left(gt\right)\\CK\perp AM\left(gt\right)\end{cases}\Rightarrow}\)BH//CK

+) Xét \(\Delta BHM;\Delta CKM\)có: \(\hept{\begin{cases}\widehat{BHM}=\widehat{CKM}\left(=90^o\right)\\MC=BM\left(gt\right)\\\widehat{HMB}=\widehat{KMC}\left(đ^2\right)\end{cases}\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\Rightarrow BH=CK}\)

b) 

Xét ΔHMC;ΔKMB có:

BM=MC(gt)

^HMC=^KMB (đối đỉnh)

HM=MK(do ΔBHM=ΔCKM)

=> ΔHMC=ΔKMB(cgc)

=> ^HCM=^KBM(2 góc tương ứng)

Mà : 2 góc này ở vị trí so le trong

=> BK // CH (đpcm)

Có : ΔHMC=ΔKMB(cmt)

=> BK=CH(2 cạnh tương ứng)

c) Ta có: \(\hept{\begin{cases}HF=FC\\BE=EK\end{cases}\left(gt\right)}\)

Mà BK=HC (cmt) => HF=FC =BE=EK

Xét \(\Delta BEM;\Delta FCM:\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{MBE}=\widehat{MCF}\left(slt\right)\\BE=FC\left(cmt\right)\end{cases}\Rightarrow\Delta BEM=\Delta FCM\left(cgc\right)}\)

=> EM=FM (2 cạnh tương ứng)

=> M Là trung điểm của EF

Do đó : E, ,M, F thẳng hàng

Nguồn: nguyen thi vang (h.vn)

24 tháng 3 2020

Bạn bổ sung trên hình điểm E và F nhé. Mình quên chưa thêm

a: BH⊥AM

CK⊥AM

Do đó: BH//CK

b: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có 

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)

Do đó: ΔHMB=ΔKMC

Suy ra: MH=MK

hay M là trung điểm của HK

c: Xét tứ giác BHCK có 

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

Suy ra: HC//BK