Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác AMB = tam giác AMC (mới đúng nha bn)
a) tam giác AMB = tam giác AMC => AB = AC (2 cạnh tương ứng) (đpcm)
tam giác AMB = tam giác AMC => góc B = góc C (2 góc tương ứng) (đpcm)
b) tam giác AMB = tam giác AMC => M1 = M2 (2 góc tương ứng)
mà M1 kề bù với M2
=> M1 = M2 = 1800 : 2 = 900
=> AM vuông góc BC (đpcm)
c) tam giác AMB = tam giác AMC
=> MB = MC (2 cạnh tương ứng)
=> M là trung điểm BC (đpcm)
d) tam giác AMB = tam giác AMC
=> A1 = A2 (2 góc tương ứng)
=> AM là phân giác góc A (đpcm)
a)+)Xét 2 tam giác vuông : tam giác AHM và tam giác AKM có:
góc HAM = góc KAM (vì AM là tia phân giác của góc A)
AM là canhj chung
=>tam giác HAM =tam giác KAM (cạnh huyền -góc nhọn)
=>MH=MK(2 cạnh tương ứng)
b)Xét 2 tam giác vuông: tam giác HMB và tam giác KMC có:
MB=MC (vì M là trung điểm của BC)
MH=MK (theo câu a)
=>tam giác HMB= tam giác KMC (cạnh huyền -cạnh góc vuông)
=>góc B =góc C ( 2 góc tương ứng) (đpcm)
Giải :
Xét tam giác AHM vuông tại H và tam giác AKM vuông tại K , có :
+ góc HAM = góc KAM (vì AM là tia phân giác của góc BAC )
+ AM : cạnh chung
Nên tam giác AHM = tam giác AKM (cạnh huyền - góc nhọn)
=> MH = MK (hai cạnh tương ứng )
b, Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K, có:
+ MH = MK (theo câu a)
+ BM = CM (M là trung điểm của BC )
Nên tam giác BHM = tam giác CKM (cạnh huyền - cạnh góc vuông)
=> góc B = góc C (hai góc tương ứng )
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )