K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

\(P_{x-1}+P_{x-2}=\left[1.2.3....\left(x-1\right)\right]+\left[1.2.3...\left(x-2\right)\right]\)

\(VT=1.2.3...\left(x-1\right)\left(x-1+1\right)\)

VT = 1 . 2 . 3 . (x - 1) . x

VT = Px 

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a.

\(y=(x-x^{\frac{1}{2}})^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}(x-x^{\frac{1}{2}})'(x-x^{\frac{1}{2}})^{\frac{-3}{2}}\)

\(=-\frac{1}{2}(1-\frac{1}{2}x^{-\frac{1}{2}})(x-x^{\frac{1}{2}})^{\frac{-3}{2}}\)

b. Tương tự a.

\(y'=\frac{-1}{2}(1+\frac{1}{2}x^{\frac{-1}{2}})(x+x^{\frac{1}{2}})^{\frac{-3}{2}}\)

c.

\(y=(x^2+1)^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}(x^2+1)'(x^2+1)^{\frac{-3}{2}}\)

\(=\frac{-1}{2}.2x(x^2+1)^{\frac{-3}{2}}=-x(x^2+1)^{\frac{-3}{2}}\)

d.

\(y=(2x+1)^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}(2x+1)'(2x+1)^{\frac{-3}{2}}=\frac{-1}{2}.2(2x+1)^{\frac{-3}{2}}=-(2x+1)^{\frac{-3}{2}}\)

 

 

Cái dấu giữa )( là / hay này vậy '

NV
28 tháng 2 2023

a.

Kẻ \(AE\perp SD\) 

Do \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AE\)

\(\Rightarrow AE\perp\left(SCD\right)\Rightarrow AE=d\left(A;\left(SCD\right)\right)\)

\(AE=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\dfrac{4a\sqrt[]{5}}{5}\)

\(\left\{{}\begin{matrix}AM\cap\left(SCD\right)=C\\MC=\dfrac{3}{4}AC\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SCD\right)\right)=\dfrac{3}{4}d\left(A;\left(SCD\right)\right)=\dfrac{3a\sqrt{5}}{5}\)

\(\left\{{}\begin{matrix}MN\cap\left(SCD\right)=S\\NS=\dfrac{1}{2}MS\end{matrix}\right.\) \(\Rightarrow d\left(N;\left(SCD\right)\right)=\dfrac{1}{2}d\left(M;\left(SCD\right)\right)=\dfrac{3a\sqrt{5}}{6}\)

b.

Qua S kẻ tia Sx song song cùng chiều tia DC, trên Sx lấy F sao cho \(SF=DC\)

\(\Rightarrow CDSF\) là hình bình hành \(\Rightarrow CF||SD\Rightarrow\left(SAD\right)||\left(BCF\right)\Rightarrow CD\perp\left(BCF\right)\)

Qua B kẻ \(BG\perp CF\Rightarrow BG\perp\left(SCD\right)\Rightarrow\widehat{BDG}\) là góc giữa BD và (SCD)

SF song song và bằng CD nên SF song song và bằng AB \(\Rightarrow SABF\) là hbh

\(\Rightarrow FB||SA\Rightarrow FB\perp\left(ABCD\right)\) \(\Rightarrow FB\perp BC\)

\(BF=SA=2a\Rightarrow BG=\dfrac{BF.BC}{\sqrt{BF^2+BC^2}}=\dfrac{4a\sqrt{5}}{5}\) 

 \(BD=\sqrt{AB^2+AD^2}=5a\)

\(\Rightarrow sin\widehat{BDG}=\dfrac{BG}{BD}=\dfrac{4\sqrt{5}}{25}\)

NV
28 tháng 2 2023

c.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

\(\Rightarrow\widehat{DBA}\) là góc giữa BD và (SAB)

\(tan\widehat{DBA}=\dfrac{AD}{AB}=\dfrac{4}{3}\Rightarrow\widehat{DBA}\)

d.

Từ B kẻ \(BH\perp AC\) (H thuộc AC)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BH\)

\(\Rightarrow BH\perp\left(SAC\right)\Rightarrow\widehat{BSH}\) là góc giữa SB và (SAC)

\(BH=\dfrac{AB.BC}{\sqrt{AB^2+BC^2}}=\dfrac{12a}{5}\)

\(\Rightarrow sin\widehat{BSH}=\dfrac{BH}{SB}=\dfrac{12\sqrt{13}}{65}\Rightarrow\widehat{BSH}\)

NV
10 tháng 7 2021

a.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{6}}{3}\)

\(cos\left(x+\dfrac{\pi}{3}\right)=cosx.cos\left(\dfrac{\pi}{3}\right)-sinx.sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{6}-3}{6}\)

b.

\(\pi< x< \dfrac{3\pi}{2}\Rightarrow sinx< 0\)

\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\dfrac{5}{13}\)

\(B=sin\left(\dfrac{\pi}{3}-x\right)=sin\left(\dfrac{\pi}{3}\right).cosx-cos\left(\dfrac{\pi}{3}\right).sinx=...\) (bạn tự thay số bấm máy)

NV
10 tháng 7 2021

c.

\(A=cos^2x+cos^2y+2cosx.cosy+sin^2x+sin^2y+2sinx.siny\)

\(=\left(cos^2x+sin^2x\right)+\left(cos^2y+sin^2y\right)+2\left(cosx.cosy+sinx.siny\right)\)

\(=1+1+2cos\left(x-y\right)\)

\(=2+2cos\left(\dfrac{\pi}{3}\right)=...\)

d.

\(B=cos^2x+sin^2y+2cosx.siny+cos^2y+sin^2x-2sinx.cosy\)

\(=\left(cos^2x+sin^2x\right)+\left(cos^2y+sin^2y\right)-2\left(sinx.cosy-cosx.siny\right)\)

\(=2-2sin\left(x-y\right)=2-2sin\left(\dfrac{\pi}{3}\right)=...\)

6 tháng 8 2021

b) `sin^2 3x=1`

`<=> (1-cos6x)/2=1`

`<=> 1-cos6x=2`

`<=> cos6x=-1`

`<=> 6x=π +k2π`

`<=>x=π/6 +k π/3 ( k \in ZZ)`

c) `tan^2 2x=3`

`<=> (1-cos4x)/(1+cos4x)=3`

`<=> 1-cos4x=3+3cos4x`

`<=>cos4x = -1/2`

`<=>4x= \pm (2π)/3 +k2π`

`<=>x =  \pm π/6 + k π/2 (k \in ZZ)`