Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: Vì (d1)//(d) nên a=2
=>y=2x+b
Khi x=2 thì y=-1/2*2^2=-2
Thay x=2 và y=-2 vào (d1), ta được;
b+4=-2
=>b=-6
b:
\(\hept{\begin{cases}x^2-4x+3=0\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(x-3\right)=0\\x^2+xy+y^2=1\end{cases}}\)
\(\Leftrightarrow\left(I\right)\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\left(h\right)\left(II\right)\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}}}\)
Giải hệ (I) \(\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\1+y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y^2+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y\left(y+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}\left(h\right)\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
Giải hệ (II)\(\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\9+3y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y^2+3y+8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\\left(y+\frac{3}{2}\right)^2+\frac{23}{4}=0\end{cases}}\)hệ vô nghiệm
Đề bài ko chính xác, nếu x bất kì thì tồn tại vô số x để P nguyên
Nếu \(x\) nguyên thì mới có hữu hạn giá trị x
Bài 1: ( Tự vẽ hình )
Áp dụng tỉ số lượng giác trong tam giác vuông DEF
\(TanF=\frac{DE}{DF}=\frac{3}{5}\)
\(TanF=31\)
Bài 2: ( Tự vẽ hình, gợi ý: Vẽ tam giác vuông ABC chọn góc \(\widehat{B}\)là góc \(\alpha\))
Áp dụng định lý Pytago vào tam giác vuông ABC:
\(BC^2=AC^2+AB^2\)
\(1+cot^2\alpha=1+\frac{AB^2}{AC^2}=\frac{AC^2+AB^2}{AC^2}\)
\(1+cot^2\alpha=\frac{BC^2}{AC^2}=1:\frac{AC^2}{BC^2}\)
\(1+cot^2\alpha=1:sin^2\alpha\)
\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)
c.
\(\left\{\begin{matrix} 9x-6y=4\\ 15x-10y=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{6y+4}{9}\\ 15x-10y=7\end{matrix}\right.\)
\(\Rightarrow 15.\frac{6y+4}{9}-10y=7\)
\(\Leftrightarrow \frac{5}{3}(6y+4)-10y=7\Leftrightarrow \frac{20}{3}=7\) (vô lý)
Do đó hpt vô nghiệm.
d.
\(\left\{\begin{matrix} 4x+5y=3\\ x-3y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x+5y=3\\ x=3y+5\end{matrix}\right.\Rightarrow 4(3y+5)+5y=3\)
\(\Leftrightarrow 17y+20=3\Leftrightarrow 17y=-17\Leftrightarrow y=-1\)
\(x=3y+5=-3+5=2\)
Vậy HPT có nghiệm $(x,y)=(2,-1)$
Các câu còn lại bạn làm theo pp tương tự.
1.
HPT \(\Leftrightarrow \left\{\begin{matrix} 5x-y=4\\ 3x-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 5x-y=4\\ y=3x-5\end{matrix}\right.\)
\(\Rightarrow 5x-(3x-5)=4\Leftrightarrow 2x+5=4\Leftrightarrow 2x=-1\Leftrightarrow x=\frac{-1}{2}\)
\(y=3x-5=\frac{-3}{2}-5=\frac{-13}{2}\)
Vậy HPT có nghiệm $(x,y)=(\frac{-1}{2}, \frac{-13}{2})$