K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

1)Thay x=4 vào biểu thức B ta được:

\(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)=\left(\dfrac{4+1}{2}-\sqrt{4}\right)=\dfrac{1}{2}\)

2)\(M=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) (đk:\(x\ge0;x\ne1\))

\(=\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x+1-2\sqrt{x}}{2}\)

\(=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

3) \(M=\dfrac{\sqrt{x}}{6}\) 

=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{6}\) \(\Leftrightarrow6\left(\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-5\sqrt{x}+6=0\) \(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\)  (thỏa)

Vậy...

31 tháng 5 2021

a) \(x=4\rightarrow\sqrt{x}=2\) (TMĐK)

Thay \(\sqrt{x}=2\) vào A ta có :

\(A=\left(\dfrac{1}{2-1}-\dfrac{1}{2+1}\right)=\left(1-\dfrac{1}{3}\right)=\dfrac{2}{3}\)

b) M=A.B

\(\rightarrow M=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right).\left(\dfrac{x+1}{2}-\sqrt{x}\right)\)

\(\rightarrow M=\left(\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x+1-2\sqrt{x}}{2\sqrt{x}}\right)\)

\(\rightarrow M=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2\sqrt{x}}\)

\(\rightarrow M=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(M=\dfrac{\sqrt{x}}{6}\)

\(\rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{6}\)

\(\rightarrow6\left(\sqrt{x}-1\right)=\sqrt{x}+1\)

\(\rightarrow6\sqrt{x}-6-\sqrt{x}-1=0\)

\(\rightarrow5\sqrt{x}-7=0\)

\(\rightarrow\sqrt{x}=\dfrac{7}{5}\)

\(\rightarrow x=\pm\dfrac{5\sqrt{7}}{5}\)

\(\rightarrow x=\dfrac{5\sqrt{7}}{7}\) (TMĐK)

 

21 tháng 12 2021

Để 2 hàm số cắt nhau tại 1 điểm trên trục tung thì:

y1= 2x1+m-3=y2=5x2+5-3m và x1=x2=0

=> m-3=5-3m

<=> 4m=8

<=>m=2

27 tháng 11 2021

\(M\left(2;6\right)\in y=ax+5\Leftrightarrow6=a\cdot2+5\Rightarrow a=\dfrac{1}{2}\)

27 tháng 11 2021

thay x=1 y=6 vào công thức hs ta được:
a+5=6<=>a=1
 

29 tháng 10 2021

Câu 6: B

Câu 11: A
 

27 tháng 10 2021

Bài 4: 

a) áp dụng pi-ta-go ta có:\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{15^2+20^2}=25\)

áp dụng HTL ta có: \(AB.AC=BC.AH\Rightarrow\dfrac{15.20}{25}=AH\Rightarrow AH=12\)

b) áp dụng HTL và ΔAHB ta có: \(AI.AB=AH^2\)

 áp dụng HTL và ΔAHC ta có: \(AJ.AC=AH^2\)

\(\Rightarrow AI.AB=AJ.AC\)

 

27 tháng 10 2021

câu c tưởng là HA.AE=HB.BC chứ nhỉ

NV
2 tháng 11 2021

6.B

Hàm nghịch biến trên R khi:

\(1-m< 0\Rightarrow m>1\)

5.B

Đồ thị đi qua A nên:

\(-1=2a-2\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)

22 tháng 9 2021

\(ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(x+\dfrac{1}{2}\right)^2}=7-2x\\ \Leftrightarrow\left|x+\dfrac{1}{2}\right|=7-2x\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=7-2x,\forall x+\dfrac{1}{2}\ge0\\x+\dfrac{1}{2}=2x-7,\forall x+\dfrac{1}{2}< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{6},\forall x\ge-\dfrac{1}{2}\left(tm\right)\\x=\dfrac{15}{2},\forall x< -\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{13}{6}\)

22 tháng 9 2021

Mình cảm mơn nhìuu nha

1 tháng 9 2021

a)\(MinA=1\Leftrightarrow x=\dfrac{1}{4}\)

b)\(MaxP=1\Leftrightarrow x=\dfrac{1}{4}\)

1 tháng 9 2021

giải chi tiết mà