K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a)\(MinA=1\Leftrightarrow x=\dfrac{1}{4}\)

b)\(MaxP=1\Leftrightarrow x=\dfrac{1}{4}\)

1 tháng 9 2021

giải chi tiết mà

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC

Suy ra: \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

hay \(AC^2=HC\cdot BC\)

c: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

hay \(AH^2=HB\cdot HC\)

23 tháng 8 2021

Phần đâu bn ơi

27 tháng 5 2022

\(\left(x+2\right)\left(\dfrac{360}{x}-6\right)=360\)

\(ĐK:x\ne0\)

\(\Leftrightarrow\left(x+2\right)\left(\dfrac{360-6x}{x}\right)=360\)

\(\Leftrightarrow360-6x+\dfrac{720-12x}{x}=360\)

\(\Leftrightarrow360x-6x^2+720-12x=360x\)

\(\Leftrightarrow6x^2+12x-720=0\)

\(\Delta=12^2-4.6.\left(-720\right)\)

    \(=17424>0\)

`->` pt có 2 nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-12-\sqrt{17424}}{12}=-12\\x_2=\dfrac{-12+\sqrt{17424}}{12}=10\end{matrix}\right.\) ( tm )

Vậy \(S=\left\{-12;10\right\}\)

13 tháng 2 2022

a,\(\Delta=3^2-4\left(-2\right).6=9+48=57\)

\(x_1=\dfrac{-3+\sqrt{57}}{-4}=\dfrac{3-\sqrt{57}}{4}\)

\(x_2=\dfrac{-3-\sqrt{57}}{-4}=\dfrac{3+\sqrt{57}}{4}\)

b, \(\Delta=6^2-4.3.3=36-36=0\)

\(\Rightarrow x_1=x_2=\dfrac{-6}{2.3}=\dfrac{-6}{6}=-1\)

c, \(\Delta=1^2-4.6.5=1-120=-119< 0\)

Vậy pt vô nghiệm

27 tháng 5 2022

`48/[x+4]+48/[x-4]=5`           `ĐK: x \ne +-4`

`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`

   `=>48x-192+48x+192=5x^2-80`

`<=>5x^2-96x-80=0`

`<=>5x^2-100+4x-80=0`

`<=>5x(x-20)+4(x-20)=0`

`<=>(x-20)(5x+4)=0`

`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$   (t/m)

Vậy `S={-4/5;20}`

27 tháng 5 2022

ĐK : \(x\ne\pm4\)

\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow48x+192+48x-192==5x^2-80\)

\(\Leftrightarrow96x=5x^2-80\)

\(\Leftrightarrow5x^2-96x-80=0\)

\(\Leftrightarrow5x^2+4x-100-80=0\)

\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)

11 tháng 11 2021

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

26 tháng 5 2021

Ta có

 \(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right).\left(a+c\right)\\ Cmtt:b^2+1=\left(b+a\right).\left(b+c\right)\\ c^2+1=\left(c+a\right).\left(c+b\right)\)

Nên

 \(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\\ =\dfrac{\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{\left(c-a\right)}{\left(b+c\right)\left(b+a\right)}+\dfrac{\left(a-b\right)}{\left(c+a\right)\left(c+b\right)}\\ =\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =0\)

 

26 tháng 5 2021

\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\)

\(=\dfrac{b-c}{a^2+ab+bc+ac}+\dfrac{c-a}{b^2+ab+bc+ca}+\dfrac{a-b}{c^2+ab+bc+ca}\)

\(=\dfrac{b-c}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{c-a}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{a-b}{c\left(c+a\right)+b\left(a+c\right)}\)

\(=\dfrac{b-c}{\left(a+c\right)\left(a+b\right)}+\dfrac{c-a}{\left(b+c\right)\left(a+b\right)}+\dfrac{a-b}{\left(b+c\right)\left(a+c\right)}\)

\(=\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(a+c\right)+\left(a-b\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)