Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.
ĐKXĐ: \(x^2-1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
\(log_2\left(x^2-1\right)=3\)
\(\Rightarrow x^2-1=8\)
\(\Leftrightarrow x^2=9\)
\(\Rightarrow x=\pm3\) (tm)
b.
ĐKXĐ: \(x>0\)
\(log_3x+log_{\sqrt{3}}x+log_{\dfrac{1}{3}}x=6\)
\(\Leftrightarrow log_3x+2log_3x-log_3x=6\)
\(\Leftrightarrow log_3x=3\)
\(\Rightarrow x=3^3=27\)
c. ĐKXĐ: \(x>0\)
\(log_{\sqrt{2}}^2x+3log_2x+log_{\dfrac{1}{2}}x=2\)
\(\Leftrightarrow\left(2log_2x\right)^2+3log_2x-log_2x=2\)
\(\Leftrightarrow4log_2^2x+2log_2x-2=0\)
\(\Rightarrow\left[{}\begin{matrix}log_2x=-1\\log_2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\sqrt{2}\end{matrix}\right.\)
1. Chọn B.
2. Chọn B.
3. Chọn D.
4. Chọn B.
5. Chọn D.
6. Chọn A.
7. Chọn D.
8. Chọn A.
9. Chọn D.
10. Chọn C.
11. Chọn A.
12.Chọn B.
Mặt cầu tâm \(I\left(1;1;0\right)\) bán kính \(R=5\)
\(\Rightarrow IA=\sqrt{6^2+8^2}=10=2R\)
Gọi C là trung điểm IA \(\Rightarrow C\left(4;5;0\right)\Rightarrow IC=R=5\Rightarrow C\in\left(S\right)\)
Gọi D là trung điểm IC \(\Rightarrow D\left(\dfrac{5}{2};3;0\right)\), đồng thời do D là trung điểm IC \(\Rightarrow MD\perp IC\) và IM=IC=R hay tam giác MDF vuông tại D
Lại có: \(CM=CA=CI=R\Rightarrow\) tam giác AMI vuông tại M
\(\Rightarrow\Delta_VMID\sim\Delta_VAIM\) (chung góc I)
\(\Rightarrow\dfrac{MA}{MD}=\dfrac{AI}{AM}=\dfrac{2R}{R}=2\Rightarrow MA=2MD\)
\(\Rightarrow P=MA+2MB=2MD+2MB=2\left(MD+MB\right)\ge2DB=2\sqrt{\left(\dfrac{5}{2}\right)^2+\left(3-8\right)^2+0^2}=5\sqrt{5}\)
4.
a.
- Với \(m=0\Rightarrow y=-1\) hàm không có tiệm cận
- Với \(m\ne0\)
\(\lim\limits_{x\rightarrow\infty}\dfrac{x-1}{mx^2-x+1}=0\Rightarrow y=0\) là tiệm cận ngang
Xét phương trình \(mx^2-x+1=0\) có \(\Delta=1-4m\)
+ Với \(m>\dfrac{1}{4}\Rightarrow\Delta< 0\Rightarrow\) \(mx^2-x+1=0\) vô nghiệm hay ĐTHS ko có tiệm cận đứng
+ Với \(m=\dfrac{1}{4}\Rightarrow mx^2-x+1=0\) có nghiệm kép hay ĐTHS có 1 tiệm cận đứng
+ Với \(m< \dfrac{1}{4}\Rightarrow mx^2-x+1=0\) có 2 nghiệm pb (và luôn khác 1 với \(m\ne0\) ) nên ĐTHS có 2 tiệm cận đứng.
Kết luận...
4b.
- Với \(m=0\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{-1}{x^2-x-2}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow\left\{-1;2\right\}}\dfrac{-1}{x^2-x-2}=\infty\) nên \(x=-1;x=2\) là 2 tiệm cận đứng
- Với \(m\ne0\)
\(\lim\limits_{x\rightarrow\infty}\dfrac{mx^3-1}{x^2-x-2}=\infty\) nên ĐTHS không có tiệm cận ngang
Phương trình \(x^2-x-2=0\) có 2 nghiệm \(x=\left\{-1;2\right\}\) nên:
+ Nếu \(m=-1\Rightarrow-x^3-1=0\) có 1 nghiệm \(x=-1\Rightarrow\) hàm có đúng 1 tiệm cận đứng \(x=2\)
+ Nếu \(m=\dfrac{1}{8}\Rightarrow\dfrac{1}{8}x^3-1=0\) có 1 nghiệm \(x=2\Rightarrow\) ĐTHS hàm có đúng 1 tiệm cận đứng \(x=-1\)
+ Nếu \(m\ne\left\{-1;\dfrac{1}{8}\right\}\Rightarrow mx^3-1=0\) có nghiệm khác \(\left\{-1;2\right\}\Rightarrow\) ĐTHS có 2 tiệm cận đứng.
Kết luận...
Tuyệt vời, đợi mình load rồi mình hỏi thêm vào câu nữa nha bẹn
Bài này làm khá tắt chỗ 3 điểm cực trị, mình trình bày lại để bạn dễ hiểu nhé!
.......
Để y' = 0\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f'\left(\left(x-1\right)^2+m\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2+m=-1\\\left(x-1\right)^2+m=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=-1-m\left(1\right)\\\left(x-1\right)^2=3-m\left(2\right)\end{matrix}\right.\)
Để hàm số có 3 điểm cực trị thì y' = 0 có 3 nghiệm phân biệt.
Ta có 2 trường hợp.
+) \(TH_1:\) (1) có nghiệm kép x = 1 hoặc vô nghiệm và (2) có hai nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m\le0\\3-m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge-1\\m< 3\end{matrix}\right.\) \(\Leftrightarrow-1\le m< 3\)
+) \(TH_2:\) (2) có nghiệm kép x = 1 và (2) có một nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m>0\\3-m\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Leftrightarrow m\in\varnothing\)
\(\Rightarrow-1\le m< 3\Rightarrow S=\left\{-1;0;1;2\right\}\)
Do đó tổng các phần tử của S là \(-1+0+1+2=2\)
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=1\Rightarrow y=0\\x=-1\Rightarrow y=0\end{matrix}\right.\)
\(\Rightarrow A\left(0;1\right);B\left(1;0\right);C\left(-1;0\right)\)
\(S=\dfrac{1}{2}.\left|y_A-y_B\right|.\left|x_B-x_C\right|=\dfrac{1}{2}.1.2=1\)
Câu 45:
Đặt \(g\left(x\right)=\frac{x}{x^2+x+1}-\frac{m}{3}\)
\(g'\left(x\right)=\left(\frac{x}{x^2+x+1}\right)'=\frac{-x^2+1}{\left(x^2+x+1\right)^2}\)
\(g'\left(x\right)=0\Rightarrow x=\pm1\), \(g'\left(x\right)\)xác định với mọi \(x\inℝ\).
Suy ra để hàm số \(f\left(x\right)=\left|g\left(x\right)\right|\)có \(4\)điểm cực trị thì phương trình \(g\left(x\right)=0\)có hai nghiệm phân biệt khác \(\pm1\).
\(g\left(x\right)=0\Leftrightarrow\frac{x}{x^2+x+1}=\frac{m}{3}\)
\(lim_{x\rightarrow-\infty}\frac{x}{x^2+x+1}=0,lim_{x\rightarrow+\infty}\frac{x}{x^2+x+1}=0\)
\(g\left(-1\right)=-1,g\left(1\right)=\frac{1}{3}\)
Suy ra BBT của hàm \(\frac{x}{x^2+x+1}\).
Từ đó suy ra để phương trình \(\frac{x}{x^2+x+1}\)có hai nghiệm phân biệt thì
\(\orbr{\begin{cases}0< \frac{m}{3}< \frac{1}{3}\\-1< \frac{m}{3}< 0\end{cases}}\Leftrightarrow m\in\left\{-2,-1\right\}\)(vì \(m\)nguyên)
Chọn A.