Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai giúp mình câu này với
(1+1/2+1/3+...+1/2012+1/2013) .x +2013 = 2014+2015/2+...+4025/2012+4026/2013
Mình thấy đề này bị sai nhé bạn .
Trong ngoặc khi quy đồng rút gọn thì ở mẫu vẫn sẽ có nhân tử 97 là số nguyên tố, Mà 2014^2015 không chia hết cho 97
=> A không là số nguyên
Mình sửa đề thành :
\(A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{98}\right)\cdot98!\\ =2\cdot3\cdot...\cdot98+1\cdot3\cdot...\cdot98+...+1\cdot2\cdot...\cdot96\cdot98+1\cdot2\cdot...\cdot97\\ =\left(2\cdot3\cdot...\cdot98+1\cdot2\cdot...\cdot97\right)+\left(1\cdot3\cdot...\cdot98+1\cdot2\cdot...96\cdot98\right)+...\\ =2\cdot3\cdot...\cdot97\cdot\left(1+98\right)+1\cdot3\cdot4\cdot...\cdot96\cdot98\cdot\left(2+97\right)+...=99\left(2\cdot3\cdot...\cdot97+1\cdot3\cdot4...\cdot96\cdot98\right).chia.het.cho.11\)
F = 1×3 + 2×4 + 3×5 +...+ 2013×2015
= 1×(2+1) + 2×(3+1) + 3×(4+1) +...+ 2013×(2014+1)
= 1×2 + 1 + 2×3 + 1 +...+2013×2014 + 2013
= (1×2 + 2×3 +...+2013×2014) + (1+2+3+...+2013)
Ta có: 1+2+3+...+2013 = 2014 × 2013 : 2 = 2027091
đặt A = 1×2 + 2×3 +...+2013×2014
3A= 1×2×3 + 2×3×(4-1) +3×4×(5-2)...+2013×2014×(2015-2012)
3A=(1×2×3 + 2×3×4 +...+2013×2014×2015)-(1×2×3+2×3×4+....+2012×2013×2014)
3A=2013×2014×2015
A= 2723058910
F=2725086001
Ngô phương thảo thiếu rồi, cả G và J nữa chứ, sao lại chỉ có F?
A=[(1-22)/22][(1-32)/32]...[(1-20152)/20152]
A=[(1+2)(1-2)/22][(1-3)(1+3)/32]...[(1-2015)(1+2015)/20152]
=[(-1).3/2.2][(-2).4/3.3]...[-2014.2016/2015.2015]
=[(-1)(-2)(-3)...(-2013)(-2014).3.4.5...2015]/(2.2.3.3.4.4....2015.2015)
=[2(-3)...(-2014)]/(2.2.3.4.5....2015)
=(-3)(-4)...(-2014)/2.3.4.5....2015
=[-(3.4.5.6....2014)]/(2.3.4...2015)
=-1/1.2015=-1/2015