K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

\(A=2+\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+....+\left(\frac{1}{2^{2013}}-\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)

\(A=2-\frac{1}{2^{2014}}\)

6 tháng 5 2016

A=1-1/2^2015

23 tháng 8 2016

Nam mô,bài này mik làm lâu rùi,ko bik còn làm được hay ko

Ta có 

B=\(\frac{1}{2015}+\frac{2}{2014}+\frac{3}{2013}+...+\frac{2014}{2}+\frac{2015}{1}\)

=>B=\(\frac{1}{2015}+\frac{2}{2014}+\frac{3}{2013}+...\frac{2014}{2}+2015\) (rồi bạn chia 2015 thành tổng của 2015 số 1 và gộp vs từng phân số,còn dư 1 số nha bn)

=>B=\(\left(1+\frac{1}{2015}\right)+\left(1+\frac{2}{2014}\right)+\left(1+\frac{3}{2013}\right)+...+\left(1+\frac{2014}{2}\right)+1\)

=>B=\(\frac{2016}{2015}+\frac{2016}{2014}+\frac{2016}{2013}+...+\frac{2016}{2}+\frac{2016}{2016}\)

=>B=\(2016.\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+...+\frac{1}{2}+\frac{1}{2016}\right)\)

Ta có:

B:A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{2016.\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+...+\frac{1}{2}+\frac{1}{2016}\right)}\) (phần trong ngoặc của B giống vs A nên mình lượt bỏ)

=>B:A=\(\frac{1}{2016.1}\)=\(\frac{1}{2016}\)

 

 

     

24 tháng 8 2016

Bạn à mình lên bằng đt nên phiền bạn viết bình thường bắt đầu từ dòng 5 đến chỗ 2016 × giúp nhé

17 tháng 8 2015

A=[(1-22)/22][(1-32)/32]...[(1-20152)/20152]

A=[(1+2)(1-2)/22][(1-3)(1+3)/32]...[(1-2015)(1+2015)/20152]

=[(-1).3/2.2][(-2).4/3.3]...[-2014.2016/2015.2015]

=[(-1)(-2)(-3)...(-2013)(-2014).3.4.5...2015]/(2.2.3.3.4.4....2015.2015)

=[2(-3)...(-2014)]/(2.2.3.4.5....2015)

=(-3)(-4)...(-2014)/2.3.4.5....2015

=[-(3.4.5.6....2014)]/(2.3.4...2015)

=-1/1.2015=-1/2015

 

\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)

\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)

\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2014}\right)\)

\(A=2.2014.\frac{2013}{2014}\)

\(A=\frac{2.2014.2013}{2014}\)

\(A=2.2013\)

\(A=4026\)

4 tháng 1 2017

A=4026