Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(A=2+\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+....+\left(\frac{1}{2^{2013}}-\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)
\(A=2-\frac{1}{2^{2014}}\)
Nam mô,bài này mik làm lâu rùi,ko bik còn làm được hay ko
Ta có
B=\(\frac{1}{2015}+\frac{2}{2014}+\frac{3}{2013}+...+\frac{2014}{2}+\frac{2015}{1}\)
=>B=\(\frac{1}{2015}+\frac{2}{2014}+\frac{3}{2013}+...\frac{2014}{2}+2015\) (rồi bạn chia 2015 thành tổng của 2015 số 1 và gộp vs từng phân số,còn dư 1 số nha bn)
=>B=\(\left(1+\frac{1}{2015}\right)+\left(1+\frac{2}{2014}\right)+\left(1+\frac{3}{2013}\right)+...+\left(1+\frac{2014}{2}\right)+1\)
=>B=\(\frac{2016}{2015}+\frac{2016}{2014}+\frac{2016}{2013}+...+\frac{2016}{2}+\frac{2016}{2016}\)
=>B=\(2016.\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+...+\frac{1}{2}+\frac{1}{2016}\right)\)
Ta có:
B:A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{2016.\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+...+\frac{1}{2}+\frac{1}{2016}\right)}\) (phần trong ngoặc của B giống vs A nên mình lượt bỏ)
=>B:A=\(\frac{1}{2016.1}\)=\(\frac{1}{2016}\)
Bạn à mình lên bằng đt nên phiền bạn viết bình thường bắt đầu từ dòng 5 đến chỗ 2016 × giúp nhé
A=[(1-22)/22][(1-32)/32]...[(1-20152)/20152]
A=[(1+2)(1-2)/22][(1-3)(1+3)/32]...[(1-2015)(1+2015)/20152]
=[(-1).3/2.2][(-2).4/3.3]...[-2014.2016/2015.2015]
=[(-1)(-2)(-3)...(-2013)(-2014).3.4.5...2015]/(2.2.3.3.4.4....2015.2015)
=[2(-3)...(-2014)]/(2.2.3.4.5....2015)
=(-3)(-4)...(-2014)/2.3.4.5....2015
=[-(3.4.5.6....2014)]/(2.3.4...2015)
=-1/1.2015=-1/2015
\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)
\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)
\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2014}\right)\)
\(A=2.2014.\frac{2013}{2014}\)
\(A=\frac{2.2014.2013}{2014}\)
\(A=2.2013\)
\(A=4026\)