Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+2xy+2xz+y^2+2yz+z^2-x^2-y^2-z^2\)
\(=2xy+2yz+2xz=2\left(xy+yz+xz\right)=VP\)
Suy ra điều phải chứng minh
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
(x-y)^2 >= 0 ; (y-z)^2 >= 0 ; (x-z)^2 >= 0
=>(x-y)^2+(y-z)^2+(x-z)^2 >= 0
=>2x^2+2y^2+2z^2-2xy-2yz-2xz >= 0
=>2x^2+2y^2+2z^2 >= 2xy+2yz+2xz
=>x^2+y^2+z^2 >= xy+yz+xz
nhần đổi của về rùi chuyển vế bạn sẽ dc (x-y)^2 + (y-z)^2 + (Z-X) ^2 >=0 dáu = xảy ra khi x=y=z , xong nhá
Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)
\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)
Đẳng thức này đúng với mọi số x,y,z
Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)
\(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)
\(=2xy+2yz+2zx\)
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(VT=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)
\(VT=2xy+2yz+2xz\)
\(VT=2\left(xy+yz+xz\right)\)
\(VT=VP\left(đpcm\right)\)
* VT: vế trái
VP: vế phải