K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Kẻ đường cao AH

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=\dfrac{18}{5}\left(cm\right);AH=\dfrac{AB\cdot AC}{BC}=\dfrac{24}{5}\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)

Mà \(BD+DC=BC=10\Rightarrow\dfrac{7}{4}DC=10\Rightarrow DC=\dfrac{40}{7}\left(cm\right)\)

\(\Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)

\(\Rightarrow HD=BD-BH=\dfrac{30}{7}-\dfrac{18}{5}=\dfrac{24}{35}\)

Áp dụng PTG: \(AD=\sqrt{AH^2+HD^2}=\sqrt{\left(\dfrac{24}{35}\right)^2+\left(\dfrac{24}{5}\right)^2}=\dfrac{24\sqrt{2}}{7}\approx4,85\left(cm\right)\)

 

12 tháng 2 2022

E tk nha:

undefined

a: Xét tứ giác AOBM có

góc OAM+góc OBM=180 độ

=>AOBM nội tiếp

b: \(cosAOM=\dfrac{OA}{OM}=\dfrac{1}{3}\)

nên \(\widehat{AOM}\simeq71^0\)

=>\(\widehat{AOB}\simeq142^0\)

=>sđ cung nhỏ AB là 142 độ; sđ cung lơn AB=360-142=218 độ

c:

Xét (O) có

ΔBAC nội tiếp

BC là đường kính

=>ΔBAC vuông tại A

=>BA vuông góc AC

Xét(O) có

MA,MB là tiêp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM//AC

góc ACB=góc OAC

góc OAC=góc AOM

=>góc ACB=góc AOM=góc BOM

d: góc DOM+góc BOM=90 độ

góc DMO+góc AOM=90 độ

mà góc BOM=góc AOM

nên góc DOM=góc DMO

=>DO=DM

25 tháng 2 2023

 

NV
3 tháng 3 2022

Nửa chu vi hình chữ nhật:14 cm

Gọi chiều dài hình chữ nhật là x (cm) với \(7< x< 14\)

Chiều rộng hình chữ nhật là: \(14-x\) (cm)

Diện tích ban đầu của hình chữ nhật: \(x\left(14-x\right)\)

Chiều dài hình chữ nhật sau khi tăng 1cm: \(x+1\)

Chiều rộng sau khi tăng 2cm: \(14-x+2=16-x\)

Diện tích lúc sau: \(\left(x+1\right)\left(16-x\right)\)

Do diện tích tăng lên 25 \(cm^2\) nên ta có pt:

\(\left(x+1\right)\left(16-x\right)-x\left(14-x\right)=25\)

\(\Leftrightarrow x+16=25\)

\(\Leftrightarrow x=9\left(cm\right)\)

Vậy hình chữ nhật ban đầu dài 9cm và rộng 5cm

3 tháng 3 2022

em cảm ơn thầy nhiều ạ!

10 tháng 10 2021

Bài 11:
a: \(\sqrt{18}+3\sqrt{50}-\sqrt{98}\)

\(=3\sqrt{2}+15\sqrt{2}-7\sqrt{2}\)

\(=11\sqrt{2}\)

c: \(\sqrt{20}+\sqrt{80}-\sqrt{45}\)

\(=2\sqrt{5}+4\sqrt{5}-3\sqrt{5}\)

\(=3\sqrt{5}\)

10 tháng 10 2021

Trình bày dễ hiểu, đừng làm tắt ạ!

a: Ta có: BC⊥BA tại B

nên BC là tiếp tuyến của (A;AB)

b: Xét (A) có 

CB là tiếp tuyến

CD là tiếp tuyến

Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

hay AC\(\perp\)BD

12 tháng 1 2022

Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40