Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)
\(=2015-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=2015-\left(1-\frac{1}{2016}\right)\)
\(=2015-\frac{2015}{2016}\)
TO LẮM
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x+1}{x+1}-\frac{1}{x+1}=\frac{x}{x+1}\)
\(A=\left(-\frac{5}{11}\right).\frac{7}{15}+\frac{11}{-5}.\frac{30}{33}\)
\(A=-\frac{7}{33}+-2\)
\(A=-\frac{73}{33}\)
[ A] = -2
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{a\left(a+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
\(=\frac{a+1}{a+1}-\frac{1}{a+1}=\frac{a}{a+1}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)
\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
Ta có : \(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+.......+\left(1-\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=\left(1+1+1+......+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2016-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(\Rightarrow A=2016-\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2016-\frac{2016}{2017}=2015\frac{1}{2017}\)
các giá trị tuyệt đối trên có tổng lớn hơn hoặc bằng 0(>=0)
=>100x>=0
=>x>=0 =>x+1/(1.2) >0 ;x+1/(2.3)>0;x+1/(3.4);.....;x+1/(99.100)>0
=> ta có thể phá dấu giá trị tuyệt đối
=>100x=x+x+...+x(có 99. x)+(1/(1.2)+1/(2.3)+..+1/(99.100))
=>100x=99x+99/100
=>x=99/100
a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a.\left(a+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
b, \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{a.\left(a+1\right).\left(a+2\right)}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)
\(=\frac{1}{2}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Hang Nguyen
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a\left(a+1\right)}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a\left(a+1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)
\(=\frac{1}{1}-\frac{1}{a+1}=\frac{a+1}{a+1}-\frac{1}{a+1}=\frac{a}{a+1}\)