K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

Câu 2:
1.Do xy\(\perp\)CD mà zt\(\perp\)CD
\(=>xy//zt\)
2.\(=>\widehat{ABt}=\widehat{mAy}=46\left(haigocdongvi\right)\)

24 tháng 9 2021

\(\dfrac{x}{6}=\dfrac{7}{4}\Rightarrow x=\dfrac{6\cdot7}{4}=\dfrac{21}{2}\\ \dfrac{3}{x}=\dfrac{21}{17}\Rightarrow x=\dfrac{3\cdot17}{21}=\dfrac{17}{7}\)

Bài 19:

a: \(A=5x+\dfrac{1}{9}y=5\cdot\dfrac{-1}{10}+\dfrac{1}{9}\cdot4.8=\dfrac{-1}{2}+\dfrac{8}{15}=\dfrac{-15+16}{30}=\dfrac{1}{30}\)

b: \(A=x-\dfrac{2}{3}=\dfrac{-1}{3}-\dfrac{2}{3}=-1\)

\(a,7x-2x-\dfrac{2}{3}y+\dfrac{7}{9}y=5x+\dfrac{1}{9}y\\ =5.\left(\dfrac{-1}{10}\right)+\dfrac{1}{9}.4,8\\ =\dfrac{-1}{2}+\dfrac{8}{15}=\dfrac{1}{30}\\ b,x=\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\\ =\dfrac{-1}{3}+\dfrac{\dfrac{-7}{40}+\dfrac{5}{11}}{\dfrac{21}{80}-\dfrac{15}{22}}\\ =\dfrac{-1}{3}+\dfrac{\dfrac{123}{440}}{\dfrac{-369}{880}}=\dfrac{-1}{3}+\dfrac{-2}{3}=\dfrac{-3}{3}=\left(-1\right)\)

14 tháng 7 2021

A B C x y

Vì BC và Cx là 2 tia đối nên \(\widehat{BCA}\) và \(\widehat{ACx}\) là 2 góc kề bù

\(\Rightarrow\widehat{ACB}+\widehat{ACx}=180^o\)

     \(40^o+\widehat{ACx}=180^o\)

     \(\widehat{ACx}=140^o\)

b) Ta có:\(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng 3 góc trong 1 tam giác)

             ​​\(40^o+\widehat{ABC}+70^o=180^o\)

            \(\widehat{ABC}=70^o\)(1)

Vì Oy là phân giác của \(\widehat{ACx}\) nên \(\widehat{xCy}=\dfrac{\widehat{ACx}}{2}=\dfrac{140^o}{2}=70^o\)(2)

Từ (1),(2) => \(\widehat{ABC}=\widehat{xCy}\)

c)Cặp góc đồng vị là \(\widehat{ABC}\) và \(\widehat{xCy}\)

 

 

26 tháng 9 2021

\(8,\\ b,4^{333}=\left(4^3\right)^{111}=64^{111}< 81^{111}=\left(3^4\right)^{111}=3^{444}\\ c,2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=\left(5^2\right)^{100}=5^{200}\\ d,2^{375}=\left(2^3\right)^{125}=8^{125}< 9^{125}=\left(3^2\right)^{125}=3^{250}\)

b: \(4^{333}=\left(4^3\right)^{111}=64^{111}\)

\(3^{444}=\left(3^4\right)^{111}=81^{111}\)

mà 64<81

nên \(4^{333}< 3^{444}\)

c: \(2^{500}=\left(2^5\right)^{100}=32^{100}\)

\(5^{200}=\left(5^2\right)^{100}=25^{100}\)

mà 32>25

nên \(2^{500}>5^{200}\)

8 tháng 3 2020

Trả lời :

B.1/3 thuộc Q

Học tốt !

29 tháng 7 2019

a) Ta có: 2|x + 2| \(\ge\)\(\forall\)x

=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x

Hay A \(\ge\)15 \(\forall\)x

Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2

Vậy Min A = 15 tại x = -2

b) Ta có: 2(x + 5)4 \(\ge\)\(\forall\)x

         3|x + y + 2| \(\ge\)\(\forall\)x;y

=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y

Hay B \(\le\)20 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)

Vậy Max B = 20 tại x = -5 và y = 3

16 tháng 9 2021

\(a,\left\{{}\begin{matrix}Az\perp Ox\\Ox\perp Oy\left(\widehat{xOy}=90^0\right)\end{matrix}\right.\Rightarrow Az//Oy\)

\(b,\widehat{xOm}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \widehat{nAx}=\dfrac{1}{2}\widehat{xAz}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \Rightarrow\widehat{xOm}=\widehat{nAx}\left(=45^0\right)\)

Mà 2 góc này ở vị trí đồng vị nên \(Om//An\)