Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tịnh tiến điểm M(x;y) thuộc d thành M’(x’;y’); rút x, y theo x;, y’ tồi thao vào d; cuối cùng bỏ dấu phẩy.
Đáp án D
Lời giải:
Gọi $M(x,y)\in \Delta$ thì $M'(x', y')\in \Delta'$ thỏa mãn:
\(T_{\overrightarrow{u}}M'=M\)
\(\Leftrightarrow \overrightarrow{M'M}=\overrightarrow{u}\)
\(\Leftrightarrow (x-x', y-y')=(-4,1)\Leftrightarrow x=x'-4; y=y'+1\)
Thay vào PT $\Delta$:
$x'-4+1=2(y'+1)$
$\Leftrightarrow x'-2y'-5=0$
Đây chính là ptđt $\Delta'$
Đường thẳng d thành đường thẳng d’ có phương trình được xác định bằng cách: Mỗi điểm M(x;y) ∈ d' là ảnh của 1 điểm M0(x0;y0) thuộc d qua phép tịnh tiến theo vecto u=(2;3), ta có:
\(\left\{{}\begin{matrix}M_0\left(x_0;y_0\right)\in d\\\overrightarrow{M_0M}=\overrightarrow{u}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2y_0+2=0\\x_0 =x-2\\y_0=y-3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)-2\left(y-3\right)+2=0\Leftrightarrow x-2y+6=0\)
Đây là phương trình của d'
\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)
Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)
\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)
\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)
Câu 2:
\(\left(x+1\right)^2+\left(y-2\right)^2=9\)
=>R=3 và I(-1;2)
Tọa độ I' là:
x=-1+1=0 và y=2-2=0
=>Phương trình (C') là: x^2+y^2=9
Câu 3:
\(V_{\left(O;-2\right)}\left(C\right)=\left(C'\right)\)
\(x^2+y^2-2x-8=0\)
=>x^2-2x+1+y^2=9
=>(x-1)^2+y^2=9
=>R=3 và I(1;0)
Tọa độ I' là:
\(\left\{{}\begin{matrix}x=1\cdot\left(-2\right)=-2\\y=0\cdot\left(-2\right)=0\end{matrix}\right.\)
Độ dài R' là:
\(R=3\cdot\left|-2\right|=6\)
Tọa độ (C') là:
\(\left(x+2\right)^2+y^2=36\)
\(d'=T_{\overrightarrow{v}}\left(d\right)\)
Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=x'-a=x'-3\\y=y'-b=y'-4\end{matrix}\right.\)
Thay vào pt \(\left(d\right):x+y-6=0\) ta đc:
\(\Rightarrow\left(x'-3\right)+\left(y'-4\right)-6=0\)
\(\Rightarrow x'+y'-13=0\)
Vậy \(\left(d'\right):x+y-13=0\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Gọi M là 1 điểm thuộc denta và M' là ảnh của M
\(\left\{{}\begin{matrix}x'=x-4\\y'=y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'+4\\y=y'-2\end{matrix}\right.\)
Thế vào pt denta:
\(2\left(x'+4\right)-\left(y'-2\right)-5=0\Leftrightarrow2x'-y'+5=0\)
Vậy đường thẳng đó là \(2x-y+5=0\)
Khó