Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)
\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)
\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
\(cosA+cosB+cosC=2cos\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{A-B}{2}\right)+1-2sin^2\dfrac{C}{2}\)
\(=-2sin^2\dfrac{C}{2}+2sin\dfrac{C}{2}cos\left(\dfrac{A-B}{2}\right)+1\)
\(=-2\left[sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right]^2-\dfrac{1}{2}sin^2\dfrac{A-B}{2}+\dfrac{3}{2}\le\dfrac{3}{2}\)
a)
\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)
b)
\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)
\(=1-2\sin ^2x\cos ^2x\)
c)
\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)
\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)
\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)
d)
\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)
\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)
\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)
e)
\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)
\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)
\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)
\(=1+2\sin x\cos x\)
-------------
P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
a: \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\5-\dfrac{1}{2}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
b: \(\dfrac{2}{3}x+\dfrac{1}{2}x=\dfrac{5}{2}:\dfrac{15}{4}=\dfrac{5}{2}\cdot\dfrac{4}{15}=\dfrac{20}{30}=\dfrac{2}{3}\)
=>7/6x=2/3
hay \(x=\dfrac{2}{3}:\dfrac{7}{6}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
c: \(\left(\dfrac{44}{7}x+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(\Leftrightarrow x\cdot\dfrac{44}{7}+\dfrac{3}{7}=\dfrac{-11}{7}:\dfrac{11}{5}=\dfrac{-5}{7}\)
\(\Leftrightarrow x\cdot\dfrac{44}{7}=-\dfrac{8}{7}\)
hay \(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
`sin^2x+cos^2x=1`
`<=>sin^2x+(1/2)^2=1`
`<=> sinx=\pm \sqrt3/2`
• `sinx=\sqrt3/2 => P=3. (\sqrt3/2)^2 +1=13/4`
• `sinx=-\sqrt3/2 => P = 3.(-\sqrt3/2) +1=13/4`
`=>` A.
\(P=3sin^2x+1=3\left(1-cos^2x\right)+1=3\left(1-\dfrac{1}{4}\right)+1=\dfrac{13}{4}\)