Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.7
a/ $9+4\sqrt{5}=2^2+2.2\sqrt{5}+(\sqrt{5})^2=(2+\sqrt{5})^2$
b/ $\sqrt{9+4\sqrt{5}}-\sqrt{5}=\sqrt{(2+\sqrt{5})^2}-\sqrt{5}$
$=|2+\sqrt{5}|-\sqrt{5}=2+\sqrt{5}-\sqrt{5}=2$
c/ $\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{4^2+2.4\sqrt{7}+(\sqrt{7})^2}-\sqrt{7}=\sqrt{(4+\sqrt{7})^2}-\sqrt{7}$
$=4+\sqrt{7}-\sqrt{7}=4$
d.
$\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}$
$=\sqrt{(a-2)+2.2\sqrt{a-2}+2^2}+\sqrt{(a-2)-2.2\sqrt{a-2}+2^2}$
$=\sqrt{(\sqrt{a-2}+2)^2}+\sqrt{(\sqrt{a-2}-2)^2}$
$=|\sqrt{a-2}+2|+|\sqrt{a-2}-2|$
$=\sqrt{a-2}+2+2-\sqrt{a-2}=4$ (do $a\leq 6$ nên $\sqrt{a-2}-2\leq 0$ nên $|\sqrt{a-2}-2|=2-\sqrt{a-2}$)
2.5
a.
$\sqrt{(x-3)^2}=3-x$
$\Leftrightarrow |x-3|=3-x$
$\Leftrightarrow 3-x\geq 0$
$\Leftrightarrow x\leq 3$
b.
$\sqrt{25-20x+4x^2}+2x=5$
$\Leftrightarrow \sqrt{(2x-5)^2}=5-2x$
$\Leftrightarrow |2x-5|=5-2x$
$\Leftrightarrow 5-2x\geq 0$
$\Leftrightarrow x\leq \frac{2}{5}$
c.
$\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x$
$\Leftrightarrow \sqrt{(x-\frac{1}{4})^2}=\frac{1}{4}-x$
$\Leftrightarrow |x-\frac{1}{4}|=\frac{1}{4}-x$
$\Leftrightarrow \frac{1}{4}-x\geq 0$
$\Leftrightarrow x\leq \frac{1}{4}$
\(a,A=\left(1;2\right)\Leftrightarrow x=1;y=2\\ \Leftrightarrow2=\left(m+1\right)-2m+3\\ \Leftrightarrow-m+4=2\Leftrightarrow m=2\)
\(c,\)Giả sử điểm cố định là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m+1\right)x_0-2m+3\\ \Leftrightarrow y_0=mx_0+x_0-2m+3\\ \Leftrightarrow m\left(x_0-2\right)+\left(x_0-y_0+3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-y_0+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=5\end{matrix}\right.\Leftrightarrow B\left(2;5\right)\)
Vậy \(\left(d\right)\) luôn đi qua điểm \(B\left(2;5\right)\) cố định
\(d,\) Pt hoành độ giao điểm:
\(2=\left(2+1\right)x-2\cdot2+3\\ \Leftrightarrow2=3x-1\Leftrightarrow x=1\\ \Leftrightarrow C\left(1;2\right)\)
Vậy ...
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
a: Δ=(m-2)^2-4(m-4)
=m^2-4m+4-4m+16
=m^2-8m+20
=m^2-8m+16+4
=(m-2)^2+4>=4>0
=>Phương trình luôn có 2 nghiệm pb
b: x1^2+x2^2
=(x1+x2)^2-2x1x2
=(m-2)^2-2(m-4)
=m^2-4m+4-2m+8
=m^2-6m+12
=(m-3)^2+3>=3
Dấu = xảy ra khi m=3
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
b: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) co
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
CD=CM+MD=CA+DB
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: AC*BD=CM*MD=OM^2=R^2
2) \(\dfrac{\left(1+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2}{1-2\sqrt{a}}:\dfrac{\sqrt{a}}{3}\left(a>0,a\ne\dfrac{1}{4}\right)\)
\(=\dfrac{\left(1+\sqrt{a}-2+\sqrt{a}\right)\left(1+\sqrt{a}+2-\sqrt{a}\right)}{1-2\sqrt{a}}.\dfrac{3}{\sqrt{a}}\)
\(=\dfrac{3.\left(2\sqrt{a}-1\right)}{1-2\sqrt{a}}.\dfrac{3}{\sqrt{a}}=-\dfrac{9}{\sqrt{a}}\)
5) \(\left(5-\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}\right)\left(2-\dfrac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)\left(a\ge0\right)\)
\(=\left(5-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\right)\left(2-\dfrac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(5-\sqrt{a}\right)\left(2-\sqrt{a}\right)=10-7\sqrt{a}+a\)
6) \(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)\left(a,b\ge0,a\ne9,b\ne25\right)\)
\(=\left(2-\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2+\dfrac{\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=4-a\)
3) Ta có: \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=\sqrt{a}+2-\sqrt{a}-2\)
=0
Bài 1:
a)
\(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{(\sqrt{x}-2)(\sqrt{x}+2)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-2)}-\frac{2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\right)\)
\(=\frac{4\sqrt{x}(\sqrt{x}-2)-8x}{(\sqrt{x}-2)(\sqrt{x}+2)}:\frac{\sqrt{x}-1-2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}=\frac{-4x-8\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}(\sqrt{x}-2)}{-\sqrt{x}+3}\)
\(=\frac{-4\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}(\sqrt{x}-2)}{3-\sqrt{x}}=\frac{-4x(\sqrt{x}-2)}{(\sqrt{x}-2)(3-\sqrt{x})}=\frac{4x}{\sqrt{x}-3}\)
b)
Ta có:
\(m(\sqrt{x}-3).A>x+2025\)
\(\Leftrightarrow 4xm>x+2025\Leftrightarrow x(4m-1)>2025\)
\(\Leftrightarrow 4m-1>\frac{2025}{x}\Leftrightarrow m>\frac{1}{4}(\frac{2025}{x}+1)\) với mọi $x>9$
\(\Leftrightarrow m> \max \frac{1}{4}(\frac{2025}{x}+1), \forall x>9\Leftrightarrow m>56,5\)
\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(1-\dfrac{1}{\sqrt{x}}\right)\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{4}{\sqrt{x}+1}\)