K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

ĐKXĐ:........

\(\Leftrightarrow2x-2\sqrt{5x}+8-4\sqrt{x-1}=0\)

\(\Leftrightarrow x+5-2\sqrt{5x}+x+3-4\sqrt{x-1}=0\)

\(\Leftrightarrow\frac{\left(x+5\right)^2-20x}{x+5+2\sqrt{5x}}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}=0\)

\(\Leftrightarrow\frac{\left(x-5\right)^2}{x+5+2\sqrt{5x}}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}=0\)

\(\Leftrightarrow x=5\)

NV
22 tháng 10 2020

- Với \(x=0\) ko phải nghiệm

- Với \(x< 0\Rightarrow VT>0\) pt vô nghiệm

- Với \(x>0\) chia 2 vế cho x ta được:

\(x+\frac{1}{x}-5+\sqrt{x^2+\frac{1}{x^2}}=0\)

Đặt \(x+\frac{1}{x}=t\ge2\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(\Leftrightarrow t-5=\sqrt{t^2-2}\Leftrightarrow\sqrt{t^2-2}=5-t\) (\(t\le5\))

\(\Leftrightarrow t^2-2=25-10t+t^2\Rightarrow t=\frac{27}{10}\)

\(\Rightarrow x+\frac{1}{x}=\frac{27}{10}\Leftrightarrow x^2-\frac{27}{10}x+1=0\)

\(\Leftrightarrow...\)

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

Ta có : \(3x^2+5x+14=5\left(x+1\right)\sqrt{4x-1}\)

\(\Leftrightarrow\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)

\(\Leftrightarrow9x^4+25x^2+196+2\left(3x^2.5x+5x.14+3x^2.14\right)=25.\left(x+1\right)^2\left(4x-1\right)\)

\(\Leftrightarrow9x^4+25x^2+196+2\left(15x^3+70x+42x^2\right)=25\left(x+1\right)^2\left(4x-1\right)\)

\(\Leftrightarrow9x^4+25x^2+196+30x^3+140x+84x^2=25\left(x+1\right)^2\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=25\left(x^2+2x+1\right)\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+200x^2+100x-25x^2-50x-25\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+175x^2+50x-25\)

Đến đây chuyển vế sang giải nhé mệt quá 

14 tháng 7 2018

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>  \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)

Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)

...

14 tháng 7 2018

a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)

...

17 tháng 7 2016

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)

Ta xét 3 trường hợp : 

1. Với \(x< 1\) , pt trên trở thành : \(1-x+2-x=3\Leftrightarrow2x=0\Leftrightarrow x=0\)(nhận)

2. Với \(1\le x\le2\), pt trên trở thành : \(x-1+2-x=3\Leftrightarrow1=3\)(vô lý - loại)

3. Với \(x>2\) , pt trên trở thành : \(x-1+x-2=3\Leftrightarrow2x=6\Leftrightarrow x=3\)(nhận)

Vậy tập nghiệm của phương trình : \(S=\left\{0;3\right\}\)

17 tháng 7 2016

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow x-1+x-2=3\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=2\)

3 tháng 7 2015

đk: x >=0; 

bình phương 2 vế:

\(\left(\sqrt{x}+\sqrt{x+9}\right)^2=\left(\sqrt{x+1}+\sqrt{x+4}\right)^2\Leftrightarrow x+x+9+2\sqrt{x^2+9x}=x+1+x+4+2\sqrt{x^2+5x+4}\)

\(\Leftrightarrow2\left(\sqrt{x^2+9x}-\sqrt{x^2+5x+4}\right)=-4\Leftrightarrow\sqrt{x^2+9x}-\sqrt{x^2+5x+4}=-2\Leftrightarrow\sqrt{x^2+9x}=-2+\sqrt{x^2+5x+4}\)

tiếp tục bình phương 2 vế ta được: 

\(x^2+9x=4+x^2+5x+4-4\sqrt{x^2+5x+4}\Leftrightarrow4\sqrt{x^2+5x+4}=4x-8\Leftrightarrow\sqrt{x^2+5x+4}=x-2\)

lại bình phương tiếp được:

\(x^2+5x+4=x^2-4x+4\Leftrightarrow9x=0\Leftrightarrow x=0\)(t/m đk)