Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4-30x2+31x-30=0
x4+x) -30x2+30x-30=0
x{x3+1} -30{ x2-x+1}=0
x{x+1}{x2-x+1}-30{x2-x+1}=0
{x2-x+1}{x2+x-30}=0
x2+x-30=0 {vi x2-x+1>0}
x2+x-30x-30=0
{x+1}{x-30}=0
- x=-1
- x=30
Bài 1: (Mình vẫn ko hiểu lắm là phải làm ntn nên sẽ làm 2 cách)
a) \(-30x^2+30x-7,5=0\)
C1: Ta có: \(a=-30\) ; \(b=30\) ; \(c=-7,5\)
\(\Rightarrow\) \(\Delta=b^2-4ac=30^2-4.\left(-30\right).\left(-7,5\right)\)
\(\Delta=1012>0\) (lấy gần bằng nhưng vì \(\Delta\) ko có giá trị gần bằng nên chỉ ghi là "=" thôi)
\(\Rightarrow\)\(\sqrt{\Delta}=\sqrt{1012}=2\sqrt{253}\)
Vậy p/t đã cho có 2 nghiệm phân biệt là:
\(x_1=\frac{b^2-\sqrt{\Delta}}{2a}=\frac{\left(-30\right)^2-2\sqrt{253}}{2.\left(-30\right)}\approx-14,47\)
\(x_2=\dfrac{b^2+\sqrt{\Delta}}{2a}=\dfrac{\left(-30\right)^2+2\sqrt{253}}{2.\left(-30\right)}\approx-15.53\)
C2: Ta có: \(a=30\) ; \(b'=-15\) ; \(c=7,5\)
\(\Rightarrow\) \(\Delta'=b'^2-ac=\left(-15\right)-30.7,5\)
\(\Delta=0\)
Vậy p/t đã cho có nghiệm kép:
\(x_1=x_2=-\dfrac{b'}{a}=-\dfrac{\left(-15\right)}{30}=\dfrac{1}{2}=0,5\)
b) (Tương tự)
Bài 2:
\(x^2-2\left(m+2\right)x+m^2-12=0\)
a) Tại \(m=-4\) thì:
\(x^2-2\left(-4+2\right)x+\left(-4\right)^2-12=0\)
\(\Leftrightarrow\) \(x^2-2.\left(-2\right)x+\left(-4\right)^2-12=0\)
\(\Leftrightarrow\) \(x^2+4x+16-12=0\)
\(\Leftrightarrow\) \(x^2+4x+4=0\)
\(\Leftrightarrow\) \(\left(x+2\right)^2=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\) \(x=-2\)
Bài 2:
Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)
\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)
Bài 1:
Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)
\(A=x^3-30x^2-31x+1=x^3-30x^2-x^2+1=x^3-31x^2+1=x^3-x^3+1=1\)
\(ĐK:x\ge0\)
\(PT\Leftrightarrow x^2+x+1+2x\sqrt{x}+2\sqrt{x}+2x=2x^2-30x+2\)
\(\Leftrightarrow x^2-33x+1-2x\sqrt{x}-2\sqrt{x}=0\left(1\right)\)
Đặt \(\sqrt{x}=a\left(a\ge0\right)\)
\(\left(1\right)\Leftrightarrow a^4-33a^2+1-2a^3-2a=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7\pm3\sqrt{5}}{2}\\x=\frac{-5\pm\sqrt{21}}{2}\end{cases}}\)
\(1,\Delta=\left(-11\right)^2-4\cdot30=1\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11-1}{2}=5\\x=\dfrac{11+1}{2}=6\end{matrix}\right.\\ 2,\Delta=\left(-1\right)^2-4\left(-20\right)=81\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{81}}{2}=-4\\x=\dfrac{1+\sqrt{81}}{2}=5\end{matrix}\right.\\ 3,\Delta=14^2-4\cdot24=100\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14-\sqrt{100}}{2}=-12\\x=\dfrac{-14+\sqrt{100}}{2}=-2\end{matrix}\right.\\ 4,\Delta=8^2-4\left(-2\right)3=88\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-8-\sqrt{88}}{6}=\dfrac{-4+\sqrt{22}}{3}\\x=\dfrac{-8+\sqrt{88}}{6}=\dfrac{-4-\sqrt{22}}{3}\end{matrix}\right.\)
Mik làm trước câu b nha
Do \(\left(x-1\right)^4\ge0\)
\(\left(x-3\right)^4\ge0\)
\(6\left(x-1\right)\left(x-3\right)\ge0\)
\(\Rightarrow A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)\left(x-3\right)\ge0\)
\(MinA=0\)
ừ hi :)) thanks bạn