Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)
\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)
c.
\(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\)
\(\leftrightarrow\) \(x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+1+x^2+y^2+x^2y^2=2010\)
\(\leftrightarrow\)\(x^2+x^2y^2+2x\sqrt{1+y^2}.y\sqrt{1+x^2}+y^2+x^2y^2=2009\)
\(\leftrightarrow\) \(\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=2009\)
\(\leftrightarrow\) \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=\sqrt{2009}\)
c) \(A^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2y^2+x^2+x^2y^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)
\(=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)
\(=\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2-1=2010-1=2009\)
Vì A>0 nên \(A=\sqrt{2009}\)
d) \(2009^2=\left(2008+1\right)^2=2008^2+2.2008+1\)
\(1+2008^2=2009^2-2.2008=2009^2-2.2009\dfrac{2008}{2009}\)
\(A=\sqrt{2009^2-2.2009.\dfrac{2008}{2009}+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)
\(A=\sqrt{\left(2009-\dfrac{2008}{2009}\right)^2}+\dfrac{2008}{2009}=2009-\dfrac{2008}{2009}+\dfrac{2008}{2009}=2009\)
Bài 2:
Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)
\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)
Bài 1:
Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)