K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

\(x^2-6x+9=4.\sqrt{x^2-6x+6}\)\(ĐK:x^2-6x+6\ge0\)

Đặt \(\sqrt{x^2-6x+6}=t\)\(\left(ĐK:t\ge0\right)\)

\(\Leftrightarrow t^2=x^2-6x+6\)

\(\Leftrightarrow x^2-6x=t-6\)thay vào pt ta được : 

\(\Leftrightarrow t^2-6+9=4t\)

\(\Leftrightarrow t^2-4t+3=0\)\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)

Với \(t=1\Rightarrow\sqrt{x^2-6x+6}=1\)

                  \(\Leftrightarrow x^2-6x+5=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=5\left(TM\right)\end{cases}}\)

Với \(t=3\Rightarrow\sqrt{x^2-6x+6}=3\)

                   \(\Leftrightarrow x^2-6x+6=0\)

                    \(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(TM\right)\end{cases}}\)