Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(x\in\left[1;\frac{5}{2}\right]\)
Ta thấy 2 vế luôn dương, bình phương lên đc:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Đk:\(\frac{5}{2}\le x\le1\)
2 vế dương bình lên ta có:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
GT ⇒\(x^2+6x+9=2x+3+1+2\sqrt{2x+3}\)
\(\Leftrightarrow\left(x+3\right)^2=\left(\sqrt{2x+3}+1^2\right)\)
\(\Rightarrow x+2=\sqrt{2x+3}\)
\(\Rightarrow x^2+1+2x=0\)
\(\Rightarrow x=-1\)
Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á
Đk: \(-7\le x\le10\)
\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)
\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)
\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)
Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:
\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)
Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.
`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1` `ĐK: -7 <= x <= 10`
Đặt `\sqrt{10-x}-\sqrt{x+7}=t`
`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`
`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`
Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`
`<=>2t+17-t^2=2`
`<=>t^2-2t-15=0`
`<=>[(t=5),(t=-3):}`
`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`
`<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)
`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`
`<=>-x^2+3x+70=16`
`<=>[(x=9),(x=-6):}` (t/m)
Vậy `S={-6;9}`
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Đk: \(x\ge-5\)
2 vế dương bình phương lên
\(2^2\sqrt{\left(x+5\right)^2}=\left(x+2\right)^2\)
\(\Leftrightarrow4\left(x+5\right)=x^2+4x+4\)
\(\Leftrightarrow4x+20=x^2+4x+4\)
\(\Leftrightarrow16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\left(tm\right)\\x=-4\left(loai\right)\end{array}\right.\)