Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(x\in\left[1;\frac{5}{2}\right]\)
Ta thấy 2 vế luôn dương, bình phương lên đc:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Đk:\(\frac{5}{2}\le x\le1\)
2 vế dương bình lên ta có:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Đk: \(x\ge-5\)
2 vế dương bình phương lên
\(2^2\sqrt{\left(x+5\right)^2}=\left(x+2\right)^2\)
\(\Leftrightarrow4\left(x+5\right)=x^2+4x+4\)
\(\Leftrightarrow4x+20=x^2+4x+4\)
\(\Leftrightarrow16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\left(tm\right)\\x=-4\left(loai\right)\end{array}\right.\)
GT ⇒\(x^2+6x+9=2x+3+1+2\sqrt{2x+3}\)
\(\Leftrightarrow\left(x+3\right)^2=\left(\sqrt{2x+3}+1^2\right)\)
\(\Rightarrow x+2=\sqrt{2x+3}\)
\(\Rightarrow x^2+1+2x=0\)
\(\Rightarrow x=-1\)