Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)
=>x=-1 hoặc x=1
b: \(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
c: \(x^3+x^2+4=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\)
\(\Leftrightarrow\left(x+2\right)\cdot\left(x^2-x+2\right)=0\)
=>x+2=0
hay x=-2
e: \(\Leftrightarrow x^4-2x^3-3x^3+6x^2-x^2+2x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x+1\right)\left(x-1\right)=0\)
hay \(x\in\left\{2;3;-1;1\right\}\)
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
a: =>x-1=0 hoặc 3x-1=0
=>x=1 hoặc x=1/3
b: ĐKXĐ: x<>2; x<>-1
PT =>x-2-5(x+1)=15
=>x-2-5x-5=15
=>-4x-7=15
=>-4x=22
=>x=-11/2(nhận)
c: ĐKXĐ: x<>2; x<>-2
PT =>(x-1)(x-2)-x(x+2)=5x-2
=>x^2-3x+2-x^2-2x=5x-2
=>-5x+2=5x-2
=>-10x=-4
=>x=2/5(nhận)
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
a) x4 - 5x2 + 4 = 0 (*)
đặt x2 = m (\(m\ge0\))
(*) <=> m2 - 5m + 4 = 0
m2 - 4m - m + 4 = 0
m(m - 4) - (m - 4) = 0
(m - 4)(m - 1) = 0
vậy m - 4 = 0 hoặc m - 1 = 0
hay m = 4 hoặc m = 1
m = 4 => x2 = 4 => \(x=\pm2\)
m = 1 => x2 = 1 => \(x=\pm1\)
d) \(x\left(x+1\right)\left(x-1\right)\left(x-2\right)=24\)
\(\Leftrightarrow\left[x\left(x-1\right)\right]\left[\left(x+1\right)\left(x-2\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right)\left(x^2-x-2\right)-24=0\)
\(\Leftrightarrow\left(x^2-x\right)^2-2\left(x^2-x\right)+1-25=0\)
\(\Leftrightarrow\left(x^2-x+1\right)^2-25=0\)
\(\Leftrightarrow\left(x^2-x+6\right)\left(x^2-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x+6=0\left(1\right)\\x^2-x-4=0\left(2\right)\end{cases}}\)
+) Pt (1) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{23}{4}\) ( vô nghiệm )
+) Pt (2) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{17}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{4}+\frac{1}{2}\\x=-\frac{\sqrt{17}}{4}+\frac{1}{2}\end{cases}}\) ( thỏa mãn )
Vậy pt đã cho có nghiệm \(S=\left\{\pm\frac{\sqrt{17}}{4}+\frac{1}{2}\right\}\)