Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>7-x=0
hay x=7
b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)
a: =>-x+7=0
hay x=7
b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)
\(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\left(5x^2-7x+5x-7\right)=0\\ \Leftrightarrow x\left[5x\left(x+1\right)+7\left(x+1\right)\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\5x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{7}{5}\end{matrix}\right.\)
\(\Leftrightarrow5x^3+5x^2-7x^2-7x=0\)
\(\Leftrightarrow5x^2\left(x+1\right)-7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x^2-7x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\5x^2-7x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
Ta có : 7x2 - 5x + 2
= 7( x2 - 5/7x + 25/196 ) + 31/28
= 7( x - 5/14 )2 + 31/28 ≥ 31/28 > 0 ∀ x
=> Phương trình vô nghiệm
Cách này lp 9 á -.-
\(7x^2-5x+2=0\)
\(\Delta=\left(-5\right)^2-4.7.2=25-56< 0\)
Vậy phương trình vô nghiệm
\(2x^2-5x+2=0\)
\(x^2-\frac{5}{2}x+1=0\)
\(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+1=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}=0\)
\(\left(x+\frac{5}{4}\right)^2-\left(\frac{3}{4}\right)^2=0\)
\(\left(x+\frac{5}{4}-\frac{3}{4}\right)\left(x+\frac{5}{4}+\frac{3}{4}\right)=0\)
\(\left(x+\frac{1}{2}\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=-2\end{cases}}\)
2x2-5x+2
\(\Leftrightarrow2x^2-4x-x+2\)
\(\Leftrightarrow\left(2x^2-4x\right)-\left(x-2\right)\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\)
\(\Leftrightarrow2x-1=0hoacx-2=0\)
Nếu 2x-1=0
\(\Leftrightarrow x=\frac{1}{2}\)
Nếu x-2=0 thì
\(\Leftrightarrow x=2\)
Vậy pt đãcho có tập nghiệm là:S=\(\hept{\begin{cases}\\\end{cases}2;\frac{1}{2}}\)