Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\left(5x^2-7x+5x-7\right)=0\\ \Leftrightarrow x\left[5x\left(x+1\right)+7\left(x+1\right)\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\5x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{7}{5}\end{matrix}\right.\)
\(\Leftrightarrow5x^3+5x^2-7x^2-7x=0\)
\(\Leftrightarrow5x^2\left(x+1\right)-7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x^2-7x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\5x^2-7x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
(4x - 3)2 - (2x + 1)2 = 0
\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0
\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
3x - 12 - 5x(x - 4) = 0
\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0
\(\Leftrightarrow\) -5x2 + 23x - 12 = 0
\(\Leftrightarrow\) 5x2 - 23x + 12 = 0
\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0
\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0
\(\Leftrightarrow\) (x - 4)(5x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
(8x + 2)(x2 + 5)(x2 - 4) = 0
\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0
Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x
\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)
b) Ta có: \(3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)
c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)
mà \(2>0\)
và \(x^2+5>0\forall x\)
nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
MK làm lại câu b hồi nãy mk chép nhầm đề :))
b) / 2x + 1/ - / 5x - 2/ = 3 ( 1)
Lập bảng xét dấu , ta có :
+) Với : x < \(\dfrac{-1}{2}\) , ta có :
( 1) ⇔ - 2x - 1 + 5x - 2 = 3
⇔ 3x = 6
⇔ x = 2 ( KTM)
+) Với : \(\dfrac{-1}{2}\) ≤ x < \(\dfrac{2}{5}\) , ta có :
( 1) ⇔ 2x + 1 + 5x - 2 = 3
⇔ 7x = 4
⇔ x = \(\dfrac{4}{7}\) ( KTM)
+) Với : x ≥ \(\dfrac{2}{5}\) , ta có :
( 1) ⇔ 2x + 1 - 5x + 2 = 3
⇔ -3x = 0
⇔ x = 0 ( KTM)
Vậy , phương trình đã cho vô nghiệm
a)\(\left|1+4x\right|-\left|7x-2\right|=0\)
\(\left|1+4x\right|=\left|7x-2\right|\\\Leftrightarrow\left[{}\begin{matrix}1+4x=7x-2\\1+4x=-\left(7x-2\right)\end{matrix}\right.\)
TH1:
\(1+4x=7x-2\\ \Leftrightarrow4x-7x=-2-1\\ \Leftrightarrow-3x=-3\\ \Leftrightarrow x=1\)
TH2:
\(1+4x=-\left(7x-2\right)\\ \Leftrightarrow1+4x=-7x+2\\\Leftrightarrow4x+7x=2-1\\ \Leftrightarrow11x=1\\ \Leftrightarrow x=\dfrac{1}{11} \)
Vậy tập nghiệm của phương trình: S={1;\(\dfrac{1}{11}\)}
\(2x^2-5x+2=0\)
\(x^2-\frac{5}{2}x+1=0\)
\(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+1=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}=0\)
\(\left(x+\frac{5}{4}\right)^2-\left(\frac{3}{4}\right)^2=0\)
\(\left(x+\frac{5}{4}-\frac{3}{4}\right)\left(x+\frac{5}{4}+\frac{3}{4}\right)=0\)
\(\left(x+\frac{1}{2}\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=-2\end{cases}}\)
2x2-5x+2
\(\Leftrightarrow2x^2-4x-x+2\)
\(\Leftrightarrow\left(2x^2-4x\right)-\left(x-2\right)\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\)
\(\Leftrightarrow2x-1=0hoacx-2=0\)
Nếu 2x-1=0
\(\Leftrightarrow x=\frac{1}{2}\)
Nếu x-2=0 thì
\(\Leftrightarrow x=2\)
Vậy pt đãcho có tập nghiệm là:S=\(\hept{\begin{cases}\\\end{cases}2;\frac{1}{2}}\)
(x - 1)(2x² - 10) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x^2-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{1;\sqrt{5}\right\}\)
(2x - 7)2 - 6(2x - 7)(x - 3) = 0
\(\Leftrightarrow\left(2x-7\right)\left(2x-7-6x+18\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(11-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\4x=11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\frac{7}{2};\frac{11}{4}\right\}\)
(5x + 3)(x2 + 4) = 0
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x^2+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=-3\\x^2=-4\left(Loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{3}{5}\)
Vậy phương trình có tập nghiệm là: \(S=\left\{-\frac{3}{5}\right\}\)
a)
\(\left(x-1\right)\cdot\left(2x^2-10\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot2\cdot\left(x^2-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{5}\end{matrix}\right.\)
b)
\(\left(2x-7\right)^2-6\cdot\left(6x-7\right)\cdot\left(x-3\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left[\left(2x-7\right)-6\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(2x-7-6x+18\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(11-4x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)
c)
\(\left(5x+3\right)\cdot\left(x^2+4\right)=0\)
Vì \(\left(x^2+4\right)>0\Rightarrow\left(loại\right)\)
\(\Rightarrow5x+3=0\\ \Rightarrow x=-\frac{3}{5}\)
a)\(9x^2+5x+2=0\)
\(\Delta=5^2-4\cdot9\cdot2=-47< 0\)
Vô nghiệm
b)\(5x^2+4x-2=0\)
\(\Delta=4^2-4\cdot5\cdot\left(-2\right)=56\)
\(x_{1,2}=\frac{-4\pm\sqrt{56}}{10}\)
c)\(2x^3+7x^2+7x+2=0\)
\(\Rightarrow2x^3+6x^2+4x+x^2+3x+2=0\)
\(\Rightarrow2x\left(x^2+3x+2\right)+\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x^2+3x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left(x^2+2x+x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[x\left(x+2\right)+\left(x+2\right)\right]\left(2x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
=>x=-1 hoặc x=-2 hoặc \(x=-\frac{1}{2}\)
a: Đặt x-3=a; x+1=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
Mình làm lại rồi nhé!
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 3.
x1=\(\dfrac{1}{2}\)
x2=-3
\(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)