Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\dfrac{\left(x-3\right)^2-\left(x+3\right)^2-48}{x^2-9}=0\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9-48=0\)
\(\Leftrightarrow-12x-48=0\)
\(\Leftrightarrow-12x=48\)
\(\Leftrightarrow x=-4\)
\(b,\Leftrightarrow\dfrac{\left(x-5\right)\left(x+1\right)-\left(2x+3\right)-x\left(x-1\right)}{x^2-1}=0\)
\(\Leftrightarrow x^2+x-5x-5-2x-3-x^2+x=0\)
\(\Leftrightarrow-5x-8=0\)
\(\Leftrightarrow-5x=8\)
\(\Leftrightarrow x=-\dfrac{8}{5}\)
Mk giải giúp bạn phần a thôi nha! (Dài lắm, lười :v)
a, 1 + \(\dfrac{x}{3-x}\) = \(\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\) (x \(\ne\) -2; x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2x+6}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{7x+6}{x^2+5x+6}\)
Vì 3 - x \(\ne\) 0; x2 + 5x + 6 \(\ne\) 0
\(\Rightarrow\) 3(x2 + 5x + 6) = (7x + 6)(3 - x)
\(\Leftrightarrow\) 3x2 + 15x + 18 = 21x - 7x2 + 18 - 6x
\(\Leftrightarrow\) 10x2 = 0
\(\Leftrightarrow\) x = 0 (TM)
Vậy S = {0}
Chúc bn học tốt! (Nếu bạn cần phần nào khác mk có thể giúp bn chứ đừng có đăng hết lên, ít người làm lắm :v)
b)\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\Leftrightarrow x^2+2x-2=x-2\\ \Leftrightarrow x^2+2x-2-x+2=0\Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy..
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
a: \(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)
=>x=0
b: \(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{x+1}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow x^2-4x+3=2x\left(x-3\right)-2\left(x^2-1\right)\)
\(\Leftrightarrow x^2-4x+3=2x^2-6x-2x^2+2=-6x+2\)
\(\Leftrightarrow x^2+2x+1=0\)
=>x=-1(nhận)
\(a,2x^3+4x^2+10x=0\\ \Leftrightarrow2x\left(x^2+2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x^2+2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x^2+2x+1\right)+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2+4=0\left(vô..lí\right)\end{matrix}\right.\)
\(b,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne3\\x\ne4\end{matrix}\right.\\ \dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x}{x-1}-\dfrac{1}{2}-\dfrac{x+1}{x-3}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-4x+3}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2x^2-2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x-x^2+4x-3-2x^2+2}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow-x^2-2x-1=0\)
\(\Leftrightarrow x^2+2x+1=0\\ \Leftrightarrow\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\left(tm\right)\)
a) ĐKXĐ: \(x\notin\left\{-3;2;-1;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{2}{\left(x+3\right)\left(x+1\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\dfrac{2\left(x-2\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5x+5-2x+4}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{3x+9}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
Suy ra: \(\left(x+1\right)\left(x-2\right)=1-2x\)
\(\Leftrightarrow x^2-x-2-1+2x=0\)
\(\Leftrightarrow x^2+x-3=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-3\right)=13\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{13}}{2}\left(nhận\right)\\x_2=\dfrac{-1+\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{-1-\sqrt{13}}{2};\dfrac{-1+\sqrt{13}}{2}\right\}\)
Lớp 8 nên chưa học biệt thức delta
Ta có: \(x^2+x-3=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{13}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{13}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{13}-1}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
a: =>-3x=-12
=>x=4
b: =>3(3x+2)-3x-1=12x+10
=>9x+6-3x-1=12x+10
=>12x+10=6x+5
=>6x=-5
=>x=-5/6
c: =>x(x+1)+x(x-3)=4x
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=3(loại) hoặc x=0(nhận)
a) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30x}{30}+\dfrac{120}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+5x=30-144\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: S={6}
b) Ta có: \(\dfrac{4-5x}{6}=\dfrac{2\left(-x+1\right)}{2}\)
\(\Leftrightarrow2\cdot\left(4-5x\right)=12\left(-x+1\right)\)
\(\Leftrightarrow2-10x=-12x+12\)
\(\Leftrightarrow2-10x+12x-12=0\)
\(\Leftrightarrow2x-10=0\)
\(\Leftrightarrow2x=10\)
hay x=5
Vậy: S={5}
c) Ta có: \(\dfrac{-\left(x-3\right)}{2}-2=\dfrac{5\left(x+2\right)}{4}\)
\(\Leftrightarrow\dfrac{2\left(3-x\right)}{4}-\dfrac{8}{4}=\dfrac{5\left(x+2\right)}{4}\)
\(\Leftrightarrow6-2x-8=5x+10\)
\(\Leftrightarrow-2x+2-5x-10=0\)
\(\Leftrightarrow-7x-8=0\)
\(\Leftrightarrow-7x=8\)
hay \(x=-\dfrac{8}{7}\)
Vậy: \(S=\left\{-\dfrac{8}{7}\right\}\)
d) Ta có: \(\dfrac{7-3x}{2}-\dfrac{5+x}{5}=1\)
\(\Leftrightarrow\dfrac{5\left(7-3x\right)}{10}-\dfrac{2\left(x+5\right)}{10}=\dfrac{10}{10}\)
\(\Leftrightarrow35-15x-2x-10-10=0\)
\(\Leftrightarrow-17x+15=0\)
\(\Leftrightarrow-17x=-15\)
hay \(x=\dfrac{15}{17}\)
Vậy: \(S=\left\{\dfrac{15}{17}\right\}\)
a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22
⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+5x=30−144⇔−24x+5x=30−144
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: S={6}
b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2
⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)
⇔2−10x=−12x+12⇔2−10x=−12x+12
⇔2−10x+12x−12=0⇔2−10x+12x−12=0
⇔2x−10=0⇔2x−10=0
⇔2x=10⇔2x=10
hay x=5
Vậy: S={5}
c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4
⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4
⇔6−2x−8=5x+10⇔6−2x−8=5x+10
⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0
⇔−7x−8=0⇔−7x−8=0
⇔−7x=8⇔−7x=8
hay x=−87x=−87
Vậy: S={−87}S={−87}
d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1
⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010
⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0
⇔−17x+15=0⇔−17x+15=0
⇔−17x=−15⇔−17x=−15
hay x=1517x=1517
Vậy: S={1517}
a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22
⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+5x=30−144⇔−24x+5x=30−144
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: S={6}
b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2
⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)
⇔2−10x=−12x+12⇔2−10x=−12x+12
⇔2−10x+12x−12=0⇔2−10x+12x−12=0
⇔2x−10=0⇔2x−10=0
⇔2x=10⇔2x=10
hay x=5
Vậy: S={5}
c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4
⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4
⇔6−2x−8=5x+10⇔6−2x−8=5x+10
⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0
⇔−7x−8=0⇔−7x−8=0
⇔−7x=8⇔−7x=8
hay x=−87x=−87
Vậy: S={−87}S={−87}
d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1
⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010
⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0
⇔−17x+15=0⇔−17x+15=0
⇔−17x=−15⇔−17x=−15
hay x=1517x=1517
Vậy: S={1517}
a) \(\dfrac{5x}{2x+2}+1=\dfrac{6}{x+1}\left(đk:x\ne-1\right)\)
\(\dfrac{5x+2x+2}{2x+2}=\dfrac{12}{2x+2}\)
\(7x+2=12\)
\(7x=10\)
\(x=\dfrac{10}{7}\left(TM\right)\)
b) \(\dfrac{-48}{x^2-9}=\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\left(đk:x\ne\pm3\right)\)
\(\left(x-3\right)^2-\left(x+3\right)^2=-48\)
\(x^2-6x+9-x^2-6x-9=-48\)
\(x^2-12x+48=0\)
\(\left(x-6\right)^2=-12\)
Vì \(\left(x-6\right)^2\ge0\forall x\)
\(\Rightarrow\) pt vô nghiệm