K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

Điều kiện xác định: x – 2 > 0 ⇔ x > 2.

Khi đó (3) ⇔ x2 = 8 ⇔ x = –2√2 (không t/m đkxđ)

hoặc x = 2√2 (t/m đkxđ)

Vậy phương trình có nghiệm là: x = 2√2.

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

11 tháng 3 2021

ĐKXĐ: \(x\geq -2\).

Nhận thấy x = -2 không là nghiệm của pt.

Xét x khác -2.

\(PT\Leftrightarrow\sqrt[3]{x^3+8}-\left(2x+4\right)=\dfrac{24x-18}{x^2-2x-7}-6\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2-6x-4\right)}{\sqrt[3]{x^3+8}+x+2}=\dfrac{-6\left(x^2-6x-4\right)}{x^2-2x-7}\)

\(\Leftrightarrow\dfrac{x+2}{\sqrt[3]{x^3+8}+x+2}=\dfrac{-6}{x^2-2x-7}\left(1\right)\) hoặc x2 - 6x - 4 = 0.

\(\left(1\right)\Rightarrow\left(x+2\right)\left(x^2-2x-1\right)=-6\sqrt[3]{x^3+8}\)

+) Nếu x \(\geq 7\) thì \(\left(x+2\right)\left(x^2-2x-1\right)>0\ge-6\sqrt{x^3+8}\) (loại)

+) Nếu \(x\le7\) thì \(\left(x+2\right)\left(x^2-2x-1\right)\ge-2\left(x+2\right)>-6\sqrt[3]{3\left(x+2\right)}\ge-6\sqrt[3]{x^3+8}\) (loại)

Do đó (1) vô nghiệm.

Do đó \(x^2-6x-4=0\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{13}\left(TMĐK\right)\\x=3-\sqrt{13}\left(loại\right)\end{matrix}\right.\)

Vậy...

11 tháng 3 2021

có thể cho e biết sao a biết trừ 2 vế như vậy để ra biểu thức liên hợp không ạ ? tại vì nghiệm hơi xấu nên với e hơi khó đoán ạ. E cảm ơn ạ

 

27 tháng 12 2020

ĐK: \(-1\le x\le1\)

Đặt \(t=\sqrt{1-x}+\sqrt{1+x}\left(\sqrt{2}\le t\le2\right)\)

\(pt\Leftrightarrow7+\dfrac{t^4-4t^2+4}{4}=4t\)

\(\Leftrightarrow t^4-4t^2-16t+32=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3+2t-16\right)=0\)

\(\Leftrightarrow t=2\) (Vì \(t\le2\Rightarrow t^3+2t-16\le-4\))

\(\Leftrightarrow\sqrt{1-x}+\sqrt{1+x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=4\)

\(\Leftrightarrow\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\left(tm\right)\)

NV
13 tháng 1 2021

ĐKXĐ: \(1< x< 9\)

Đặt \(\left\{{}\begin{matrix}\sqrt{9-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a;b>0\\a^2+b^2=8\end{matrix}\right.\) \(\Rightarrow\left(a+b\right)^2\le16\Rightarrow a+b\le4\)

\(BPT\Leftrightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\ge3\) (1)

Đặt \(P=\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}-3\)

\(P=a+b-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-3\le a+b-\dfrac{4}{a+b}-3\)

\(P\le\dfrac{\left(a+b\right)^2-3\left(a+b\right)-4}{a+b}=\dfrac{\left(a+b+1\right)\left(a+b-4\right)}{a+b}\le0\)

\(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\le3\) (2)

(1); (2) \(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}=3\)

Dấu "=" xảy ra khi và chỉ khi: \(a=b=2\Leftrightarrow x=5\)

Vậy BPT đã cho có nghiệm duy nhất \(x=5\)

29 tháng 11 2019

. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.