Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-2}{x+1}-\dfrac{3}{x+2}>0.\left(x\ne-1;-2\right).\\ \Leftrightarrow\dfrac{x^2-4-3x-3}{\left(x+1\right)\left(x+2\right)}>0.\\ \Leftrightarrow\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)
Đặt \(f\left(x\right)=\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)
Ta có: \(x^2-3x-7=0.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{37}}{2}.\\x=\dfrac{3-\sqrt{37}}{2}.\end{matrix}\right.\)
\(x+1=0.\Leftrightarrow x=-1.\\ x+2=0.\Leftrightarrow x=-2.\)
Bảng xét dấu:
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left(-\infty-2\right)\cup\left(\dfrac{3-\sqrt{37}}{2};-1\right)\cup\left(\dfrac{3+\sqrt{37}}{2};+\infty\right).\)
\(\sqrt{x^2-3x+2}\ge3.\\ \Leftrightarrow x^2-3x+2\ge9.\\ \Leftrightarrow x^2-3x-7\ge0.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{37}}{2}.\\x=\dfrac{3+\sqrt{37}}{2}.\end{matrix}\right.\)
Đặt \(f\left(x\right)=x^2-3x-7.\)
\(f\left(x\right)=x^2-3x-7.\)
\(\Rightarrow f\left(x\right)\ge0\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)
\(\Rightarrow\sqrt{x^2-3x+2}\ge3\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)
ĐK: \(x\ge2\)
\(\dfrac{\sqrt{x^2+1}-\sqrt{x+1}}{x^2+\sqrt{3x-6}}\ge0\)
\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+1}\ge0\)
\(\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x+1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge1\end{matrix}\right.\)
Kết hợp điều kiện xác định ta được \(x\ge2\)
ĐKXĐ: \(1< x< 9\)
Đặt \(\left\{{}\begin{matrix}\sqrt{9-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a;b>0\\a^2+b^2=8\end{matrix}\right.\) \(\Rightarrow\left(a+b\right)^2\le16\Rightarrow a+b\le4\)
\(BPT\Leftrightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\ge3\) (1)
Đặt \(P=\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}-3\)
\(P=a+b-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-3\le a+b-\dfrac{4}{a+b}-3\)
\(P\le\dfrac{\left(a+b\right)^2-3\left(a+b\right)-4}{a+b}=\dfrac{\left(a+b+1\right)\left(a+b-4\right)}{a+b}\le0\)
\(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\le3\) (2)
(1); (2) \(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}=3\)
Dấu "=" xảy ra khi và chỉ khi: \(a=b=2\Leftrightarrow x=5\)
Vậy BPT đã cho có nghiệm duy nhất \(x=5\)