Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
ĐKXĐ: $x \geq 2$
\(\Leftrightarrow2\left(x-4\right).\sqrt{x-2}-2\left(x-4\right)+\left(x-2\right)\sqrt{x+1}-2\left(x-2\right)+6x-18=0\\ \Leftrightarrow2.\left(x-4\right).\dfrac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\dfrac{x-3}{\sqrt{x+1}+2}+6.\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=0\right)\\ \Leftrightarrow x=3\)
Vì \(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=\dfrac{2\left(x-4\right)+4.\sqrt{x-2}+4}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2\\ =\dfrac{2\left(x-2\right)+4.\sqrt{x-2}}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2>0\)
Vậy....
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x+1=x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}\sqrt{x^2-3x+2}\ge0\\\sqrt{x^2+x-6}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}\ge0\)
Đẳng thức xảy ra khi:
\(\left\{{}\begin{matrix}x^2-3x+2=0\\x^2+x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=2\) (thỏa mãn ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=2\)
c.
Với \(x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\\sqrt{x^4-2x^2+1}\ge0\end{matrix}\right.\) phương trình vô nghiệm
Với \(x\ge1\) pt tương đương:
\(\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow\left|x^2-1\right|=x-1\)
\(\Leftrightarrow x^2-1=x-1\) (do \(x\ge1\Rightarrow x^2-1\ge0\Rightarrow\left|x^2-1\right|=x-1\))
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0< 1\left(loại\right)\\x=1\end{matrix}\right.\)
1) Dễ thấy x= 0 không là nghiệm của phương trình nên
P T ⇔ x + 1 x − 1 x + 1 x + 4 = 6
Đặt t = x + 1 x ta được t − 1 t + 4 = 6 ⇔ t 2 + 3 t − 10 = 0 ⇔ t = 2 t = − 5
Với t = 2 ⇒ x + 1 x = 2 ⇔ x 2 − 2 x + 1 = 0 ⇔ x = 1
Với t = − 5 ⇒ x + 1 x = − 5 ⇔ x 2 + 5 x + 1 = 0 ⇔ x = − 5 − 21 2 x = − 5 + 21 2