K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy phương trình có nghiệm x = 0

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

8 tháng 7 2021

Đk:\(x^2-4\ge0\)

Pttt:\(\Leftrightarrow\sqrt{\left(x^2-4\right)+4\sqrt{x^2-4}+4}=x^2-4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x^2-4}+2\right)^2}=x^2-4\)

\(\Leftrightarrow\sqrt{x^2-4}+2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)-\sqrt{x^2-4}-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4}=2\\\sqrt{x^2-4}=-1\left(vn\right)\end{matrix}\right.\)\(\Rightarrow x^2-4=4\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\) (tm)

Vậy...

11 tháng 4 2022

lx

11 tháng 4 2022

lỗi r bn

a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0

=>(x^2+x-2)(x^2+x+1)=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

b: ĐKXĐ: x<>4; x<>1

PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)

=>(4x-9)(1-x)=6(x-4)

=>4x-4x^2-9+9x=6x-24

=>-4x^2+13x-9-6x+24=0

=>-4x^2+7x+15=0

=>x=3(nhận) hoặc x=-5/4(nhận)

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

4 tháng 3 2018

hello bạn

3 tháng 5 2020

\(ĐKXĐ:-4\le x\le4\)

Ta có : 

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

\(\Leftrightarrow\sqrt{x+4}.\sqrt{4-x}+2\sqrt{x+4}-2\sqrt{4-x}-4+2x=0\)

\(\Leftrightarrow\sqrt{16-x^2}+2\left(\sqrt{x+4}-\sqrt{4-x}\right)+2x-4=0\)

\(\Leftrightarrow\left(\sqrt{16-x^2}-4\right)+2.\left(\sqrt{x+4}-\sqrt{4-x}\right)+2x=0\)

\(\Leftrightarrow\frac{16-x^2-16}{\sqrt{16-x^2}+4}+2.\frac{x+4-4+x}{\sqrt{x+4}+\sqrt{4-x}}+2x=0\)

\(\Leftrightarrow\frac{-x^2}{\sqrt{16-x^2}+4}+\frac{4x}{\sqrt{x+4}+\sqrt{4-x}}+2x=0\)

\(\Leftrightarrow x\left[\frac{4}{\sqrt{x+4}+\sqrt{4-x}}+2-\frac{x}{\sqrt{16-x^2}+4}\right]=0\)

\(\Leftrightarrow x\left[\frac{4}{\sqrt{x+4}+\sqrt{4-x}}+\frac{2\sqrt{16-x^2}+8-x}{\sqrt{16-x^2}+4}\right]=0\)

\(-4\le x\le4\Rightarrow\frac{4}{\sqrt{x+4}+\sqrt{4-x}}+\frac{2\sqrt{16-x^2}+8-x}{\sqrt{16-x^2}+4}>0\)

=> x =0