Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
\(\sqrt{4+20x}=3x+2\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{8}{9}\left(N\right)\end{matrix}\right.\\ \sqrt{2x+5}=x+1\left(x\ge-\dfrac{5}{2}\right)\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-2\left(N\right)\end{matrix}\right.\)
\(\sqrt{4+20x}=3x+2\\ \Leftrightarrow4+20x=\left(3x+2\right)^2\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow-4-20x+9x^2+12x+4=0\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow x=0hoặcx=\dfrac{8}{9}\)
\(\sqrt{2x+5}=x+1\\ \Leftrightarrow2x+5=\left(x+1\right)^2\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2+2x+1-2x-5=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=\pm2\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
d/ Điều kiện xác định : \(4\le x\le6\)
Áp dụng bđt Bunhiacopxki vào vế trái của pt :
\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)
\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)
Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)
Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)
Vậy pt có nghiệm x = 5
a/ ĐKXĐ : \(x\ge0\)
\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)
Tới đây xét các trường hợp :
1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)
2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)
3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)
Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\)
Giải:
Nhận xét: Từ phương trình suy ra \(x>0\)
Ta có:
\(PT\Leftrightarrow\sqrt{x^2+\dfrac{4}{x^2}-1}+\sqrt{x^2+\dfrac{4}{x^2}+20}=7\)
Đặt \(t=x^2+\dfrac{4}{x^2}-1\ge0\) ta được phương trình:
\(\sqrt{t}+\sqrt{t+21}=7\)
\(\Leftrightarrow\left(\sqrt{t}-2\right)\left(\sqrt{t+21}-5\right)=0\)
\(\Leftrightarrow\left(t-4\right)\left(\dfrac{1}{\sqrt{t}+2}+\dfrac{1}{\sqrt{t+21}+5}\right)=0\)
\(\Leftrightarrow t=4\). Ta được: \(x^2+\dfrac{4}{x^2}-1=4\)
\(\Leftrightarrow x^4-5x^2+4=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (do \(x>0\))
Vậy phương trình đã cho có 2 nghiệm là \(\left\{1;2\right\}\)