K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

17 tháng 7 2016

nhan 2 ve voi x+y roi suot hien hang dang thuc

14 tháng 9 2017

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

14 tháng 9 2017

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

26 tháng 9 2017

Đáp án A

29 tháng 4 2018

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy hệ phương trình có hai nghiệm (x; y) = (0; 2); (x; y) = (2; 0) Từ giả thiết x > y nên x = 2; y = 0  ⇒ xy = 0

21 tháng 4 2019

Điều kiện: xy > 0

2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2   = 0 ⇔ x = y

Thay x = y vào x + y + x y = 16 ta được

2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4

Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)

Khi đó  x y = 4 4 = 1

Đáp án:D

24 tháng 6 2021

Cảm ơn e gái nha =))

26 tháng 7 2019

Ta có  x + y 2 + y = 3 2 x 2 + y 2 + x y + x = 5 ⇔ 2 x 2 + 4 x y + 2 y 2 + 2 y = 6 2 x 2 + 2 y 2 + 2 x y + x = 5

Suy ra 2xy + 2y – x – 1 = 0 ⇔ (x + 1) (2y – 1) = 0x = −1 hoặc y = 1 2  

Với x = −1, ta được y 2 – y – 2 = 0 ⇔ y = − 1 y = 2  

Ta được hai nghiệm (−1; −1) và (−1; 2)

Với y = 1 2 , ta được x 2 + x − 9 4 = 0 ⇔ x = − 1 ± 10 2    

Ta được hai nghiệm − 1 − 10 2 ; 1 2 và  − 1 + 10 2 ; 1 2

Vậy hệ có bốn nghiệm (−1; −1); (−1; 2); − 1 − 10 2 ; 1 2 và  − 1 + 10 2 ; 1 2

Đáp án:A