Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: x y ≥ 0 x , y ≥ − 1
Đặt S = x + y P = x . y điều kiện S 2 ≥ 4 P hệ phương trình đã cho trở thành:
S − P = 3 S + 2 + 2 S + P + 1 = 16 ⇔ P = S − 3 2 S ≥ 3 2 S + S − 3 2 + 1 = 14 − S ⇔ 3 ≤ S ≤ 14 ; P = S − 3 2 4 S 2 − 5 S + 10 = 196 − 28 S + S 2 ⇔ 3 ≤ S ≤ 14 ; P = S − 3 2 3 S 2 + 8 S − 156 = 0 ⇒ S = 6 P = 9
Hay x + y = 6 x . y = 9 ⇔ x + y = 6 x 2 − 6 x + 9 = 0 ⇒ x = y = 3
Vậy hệ đã cho có nghiệm (x; y) = (3; 3)
Suy ra x + 2y = 9
Đáp án:A
Bài tập 6: Cho hệ phương trình : (1)
1. Giải hệ (1) khi m = 1.
2. Xác định giá trị của m để hệ (1):
a) Có nghiệm duy nhất và tìm nghiệm duy nhất đó theo m.
b) Có nghiệm (x, y) thỏa: x – y = 2.
AI giải dùm mình đi
Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*)
Thế vào PT (2) ta được:
x + (a – 1) [(a + 1)x – (a + 1)] = 2 ⇔ x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2 x + (a2 – 1)x – (a2 – 1) = 2
⇔ a 2 x = a 2 + 1 ( 3 )
Với a ≠ 0 , phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:
y = a + 1 a 2 + 1 a 2 − a + 1 = a + 1 a 2 + 1 − a 2 a + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2
Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ; y ) = a 2 + 1 a 2 ; a + 1 a 2
⇒ x + y = a 2 + 1 a 2 + a + 1 a 2 = a 2 + a + 2 a 2
Đáp án: A
Điều kiện: xy > 0
2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2 = 0 ⇔ x = y
Thay x = y vào x + y + x y = 16 ta được
2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4
Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)
Khi đó x y = 4 4 = 1
Đáp án:D