K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

Bài tập 6: Cho hệ phương trình :     (1)

1.      Giải hệ (1) khi m =  1.

2.      Xác định giá trị của m để hệ (1):

a)      Có nghiệm duy nhất và tìm nghiệm duy nhất đó theo m.

b)      Có nghiệm (x, y) thỏa: x – y = 2. 

AI giải dùm mình đi

12 tháng 2 2022

a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)

Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)

\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)

Dấu''='' xảy ra khi m =2 

Vậy ...

31 tháng 1 2023

`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:

`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`

`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`

`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`

`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`

`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`

`b){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`

`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`

`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

   Mà `-m^2+m-6` luôn `ne 0`

   `=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`

 `=>AA m` thì hệ ptr có `1` nghiệm duy nhất

`c){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`

Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`

                `=[-3m-6-12+3m]/[-3(m^2-m+6)]`

                `=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`

Vì `(m-1/2)^2+23/4 >= 23/4`

`<=>6/[(m-1/2)^2+23/4] <= 24/23`

Hay `x-y <= 24/23`

Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên

Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Tới đây bạn tự làm tiếp nhé