K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

a)\({-1\over 2}x^2×y^2 - x^2×y^2 +{2\over 3} x^2×y^2 \)

=\(({ -1\over 2}-1+{ 2\over 3})x^2×y^2\)

=\({-5 \over 6}x^2×y^2\)

b)\({1 \over 2}a^3×b^2 +{4 \over 3}3ab^2 × {1 \over 2}a^2\)

=\({1 \over 2}a^3×b^2 +({4 \over 3}× {1 \over 2})3b^2 (a×a^2) \)

=\({1 \over 2}a^3×b^2 +{2 \over 3}3a^3b^2\)

=\(({1 \over 2} +{2 \over 3}3)a^3b^2\)

=\({5 \over 2}a^3b^2\)

c)

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

22 tháng 1 2019

\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)

e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)

Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)

Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:

\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

22 tháng 1 2019

a) \(x-2xy+x=0\Leftrightarrow2x-2xy=0\)

\(\Leftrightarrow2x\left(1-y\right)=0\Leftrightarrow\hept{\begin{cases}2x=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

22 tháng 1 2019

b) \(2xy+x-2y=4\)

\(\Leftrightarrow x\left(2y+1\right)-2y-1=3\)

\(\Leftrightarrow x\left(2y+1\right)-\left(2y+1\right)=3\)

\(\Leftrightarrow\left(2y+1\right)\left(x-1\right)=3\)

Đến đây bí =) Alibaba!