Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sin^{2015x}-2sin^{2017}x-cos^{2016}x+2cos^{2018}x-cos2x=0\)
\(\Leftrightarrow sin^{2015}x\left(1-2sin^2x\right)+cos^{2016}x\left(2cos^2x-1\right)-cos2x=0\)
\(\Leftrightarrow cos2x\left(sin^{2015}x+cos^{2016}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin^{2015}x+cos^{2016}x=1\end{matrix}\right.\)
\(cos2x=0\Rightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\left\{{}\begin{matrix}sin^{2015}x\le sin^2x\\cos^{2016}x\le cos^2x\end{matrix}\right.\) \(\Rightarrow sin^{2015}x+cos^{2016}x\le sin^2x+cos^2x=1\)
Dấu "=" xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=0\\cosx=\pm1\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=0\\sin=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(-10\le\frac{\pi}{4}+\frac{k\pi}{2}\le30\Rightarrow k=...\)
\(-10\le k\pi\le30\Rightarrow k=...\)
\(-10\le\frac{\pi}{2}+k2\pi\le30\Rightarrow k=...\)
Bạn tự giải nốt và kết luận
Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Ớ anh ơi, nhấn vô cái link tham khảo nó lại ra đúng link của câu này ạ :(
Với \(cosx=0\) ko phải nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow tan^2x-4\sqrt{3}tanx+1=-2\left(1+tan^2x\right)\)
\(\Leftrightarrow3tan^2x-4\sqrt{3}tanx+3=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
\(\cos2x-\sin x+\cos x=0\Leftrightarrow\cos^2x-\sin^2x+\left(\cos x-\sin x\right)=0\)
\(\Leftrightarrow\left(\cos x-\sin x\right)\left(\cos x+\sin x+1\right)=0\)
\(\Leftrightarrow\begin{cases}\cos x-\sin x=0\\\cos x+\sin x+1=0\end{cases}\) \(\Leftrightarrow\begin{cases}\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)=0\\\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)=-1\end{cases}\)
\(\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=\frac{\pi}{2}+k\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x-\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\pi+k2\pi\\x=-\frac{\pi}{2}+k2\pi\end{cases}\)
pt<=>sin2018x+cos2018x=sin2x+cos2x
<=>sin2x.(sin2016x-1)=cos2x.(1-cos2016x)
Ta có:\(\left\{{}\begin{matrix}sin^2x\ge0\\cos^2x\ge0\end{matrix}\right.\)và\(\left\{{}\begin{matrix}sin^{2016}x-1\ge0\\1-cos^{2016}x\le0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\)
=>VT=VP=0
<=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}sin^2x=0\\sin^{2016}x=1\end{matrix}\right.\\\left[{}\begin{matrix}cos^2x=0\\cos^{2016}x=1\end{matrix}\right.\end{matrix}\right.\)<=>x=\(\dfrac{k\Pi}{2}\)
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)