K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

ĐKXĐ:    \(0\le x\le\frac{3}{2}\)

ĐẶT:    \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{3-2x}=b\end{cases}\Rightarrow}a;b\ge0\)

=>   \(\hept{\begin{cases}x=a^2\\3-2x=b^2\end{cases}}\)

=>    \(2a^2+b^2=3\)

KHI ĐÓ PT BAN ĐẦU SẼ ĐƯỢC:     \(9+3ab=7a+5b\)

<=>     \(6+3+3ab=7a+5b\)     (*)

THAY    \(2a^2+b^2=3\)vào PT (*) TA SẼ ĐƯỢC:   

=>    \(2a^2+b^2+3ab+6=2\left(2a+b\right)+3\left(a+b\right)\)

<=>   \(\left(a+b\right)\left(2a+b\right)+6=2\left(2a+b\right)+3\left(a+b\right)\)

<=>    \(\left(a+b-2\right)\left(2a+b-3\right)=0\)

<=>    \(\orbr{\begin{cases}a+b=2\\2a+b=3\end{cases}}\)

TH1:     \(a+b=2\Rightarrow\sqrt{x}+\sqrt{3-2x}=2\)

=>    \(x+3-2x+2\sqrt{x\left(3-2x\right)}=4\)

<=>  \(2\sqrt{3x-2x^2}=x+1\)

<=>  \(4\left(3x-2x^2\right)=x^2+2x+1\)

<=>  \(12x-8x^2=x^2+2x+1\)

<=>  \(9x^2-10x+1=0\)

<=>  \(\left(x-1\right)\left(9x-1\right)=0\)

<=>   \(\orbr{\begin{cases}x=1\\x=\frac{1}{9}\end{cases}}\)

=> TA THẤY CÁC GIÁ TRỊ x đều TMĐK.

BẠN TỰ XÉT NỐT TRƯỜNG HỢP 2:     \(2a+b=3\Rightarrow2\sqrt{x}+\sqrt{3-2x}=3\)      nha

28 tháng 8 2019

đạt 

\(\hept{\begin{cases}\sqrt{a}=f\\\sqrt{3-2a}=h\end{cases}}\Rightarrow3ab+9=7f+5h\)

22 tháng 1 2020

\(a,Đk:1\le x\le4\)

Đặt \(y=\sqrt{4-x}+\sqrt{2x-2}\)Ta có: \(y^2=4-x+2x-2+2\sqrt{\left(4-x\right)\left(2x-2\right)}\)

\(\Leftrightarrow x+2+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2\Leftrightarrow x+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2-2\)

Phương trình trở thành: \(5+y^2-2=4y\)

\(\Leftrightarrow y^2-4y+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=3\end{cases}}\) ( Vì \(a+b+c=0\))

  • \(y=1.\) Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=1\Leftrightarrow\sqrt{2x-2}=1-\sqrt{4-x}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{4-x}\ge0\\2x-2=\left(1-\sqrt{4-x}\right)^2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le1\\2x-2=1-2\sqrt{4-x}+4-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}0\le4-x\le1\\2\sqrt{4-x}=7-3x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3\le x\le4;7-3x\ge0\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\varnothing\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\) \(\Leftrightarrow x\in\varnothing\)

  • \(y=3\)Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=3\Leftrightarrow\sqrt{2x-2}=3-\sqrt{4-x}\)

\(\Leftrightarrow\hept{\begin{cases}3-\sqrt{4-x}\ge0\\2x-2=\left(3-\sqrt{4-x}\right)^2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2x-2=9-6\sqrt{4-x}+4-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2\sqrt{4-x}=5-x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}0\le4-x\le9;5-x\ge0\\4\left(4-x\right)=\left(5-x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\x^2-6x+9=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất là \(x=3\)

(Làm xong hoa mắt :((

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:

a. ĐKXĐ: $x\geq 0$

$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$

$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$

$\Leftrightarrow 13\sqrt{2x}=28$

$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$

$\Leftrightarrow 2x=\frac{784}{169}$

$\Leftrightarrow x=\frac{392}{169}$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$

PT $\Leftrightarrow \frac{3x-2}{x+1}=9$

$\Rightarrow 3x-2=9(x+1)$

$\Leftrightarrow x=\frac{-11}{6}$ (tm)

16 tháng 10 2018

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự

2 tháng 4 2020

Đề sai

2 tháng 4 2020

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

Đề sai

NV
2 tháng 3 2020

ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left(2x-1\right)x-\left(2x-1\right)\sqrt{x+3}-x^2+x+3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-\sqrt{x+3}\right)-\left(x^2-x-3\right)=0\)

\(\Rightarrow\frac{\left(2x-1\right)\left(x^2-x-3\right)}{x+\sqrt{x+3}}-\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(\frac{2x-1}{x+\sqrt{x+3}}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\\frac{2x-1}{x+\sqrt{x+3}}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\x-1=\sqrt{x+3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left(x-1\right)^2=x+3\end{matrix}\right.\)

Bạn tự giải nốt