Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>9x+4y=360 và 36/x-36/y=1/2
=>4y=360-9x và 36/x-36/y=1/2
=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)
=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)
=>90x-2,25x^2=2(3240-117x)
=>-2,25x^2+90x-6840+234x=0
=>x=118,3 hoặc x=25,7
=>y=-176,175 hoặc y=32,175
Trình bày nv bạn nhưng k bít mình làm có đúng k:
Hpt có ng duy nhất
<=> 2/m khác m/2
<=> m khác 2 va -2
Ta có hệ đã cho tương đương vs:\(\hept{\begin{cases}2x-2y=0\\\left(m+2\right)Y=1\end{cases}}\)
<=>\(\hept{\begin{cases}2x=2y\\y=\frac{1}{m+2}\end{cases}}\)
<=>x=y=1/( m+2).
Theo bài ra thì x,y là các số nguyên
=>1/(m+2) nguyên
=> m+2 thuộc Ư (1)
=> m+2 thuộc {1;-1}
m+2=1=>m=-1(Tm)
m+2=-1=>m=-3(Tm)
Vậy....
=>16x+9y=840 và 210/x-210/y=7/4
=>16x=840-9y và 30/x-30/y=1/4
=>x=-9/16y+52,5 và (30y-30x)=xy/4
=>xy=120y-120x
=>y(-9/16y+52,5)=120y-120(-9/16y+52,5)
=>-9/16y^2+52,5y-120y+120(-9/16y+52,5)=0
=>-9/16y^2-67,5y-67,5y+6300=0
=>y=40 hoặc y=-280
=>x=30 hoặc x=210
`x^2+\sqrt{x^2+20}=22`
`<=>x^2+20+\sqrt{x^2+20}-42=0`
Đặt `\sqrt{x^2+20}=t` `(t > 0)` khi đó ta có ptr:
`t^2+t-42=0`
`<=>t^2+7t-6t-42=0`
`<=>t(t+7)-6(t+7)=0`
`<=>(t+7)(t-6)=0`
`<=>` $\left[\begin{matrix} t=-7\text{ (ko t/m)}\\ t=6\text{ (t/m)}\end{matrix}\right.$
`@ t=6=>\sqrt{x^2+20}=6`
`<=>x^2+20=36`
`<=>x^2=16`
`<=>x=+-4`
Vậy `S={+-4}`
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)
Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)
\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)