K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2021

Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)

Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)

Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)

14 tháng 3 2016

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)

5 tháng 11 2018

Đặt  \(A=4x^4+1\)

\(=\left(2x^2\right)^2+2.2x^2.1+1^2-4x^2\)

\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

Điều kiện cần để A là số nguyên tố:

\(\orbr{\begin{cases}2x^2-2x+1=1\\2x^2+2x+1=1\end{cases}\Rightarrow}\hept{\begin{cases}2x\left(x-1\right)=0\\2x\left(x+1\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}\left(x\in N\right)}\)

Nếu x = 0 thì A = 1 không là số nguyên tố (loại)

Nếu x = 1 thì A = 5 là số nguyên tố (thỏa mãn)

Vậy x = 1

26 tháng 9 2020

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

19 tháng 1 2021

a) Đúng

b) Đúng

c) Sai vì tích của hai số nguyên âm là số nguyên dương. Ví du (–13) .(–4) = 52

d) Đúng

19 tháng 1 2021

C sai

Vd:  -2×(-2) khác -4

        -2×(-2)=4