K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

Vì \(\left|x-\frac{2}{5}\right|\ge0;\left|2y+3\right|\ge0;\left(z-2\right)^2\ge0\)

=> \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)

Mà theo đề bài: \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)

=> \(\begin{cases}\left|x-\frac{2}{5}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{2}\\z=2\end{cases}\)

Vậy \(x=\frac{2}{5};y=-\frac{3}{2};z=2\)

17 tháng 9 2016

Ta có :

\(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)

Vì \(\begin{cases}\left|x-\frac{2}{5}\right|\ge0\\\left|2y+3\right|\ge0\\\left(z-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-\frac{3}{2}\\z=2\end{cases}\)

Vậy .................

30 tháng 8 2021

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\Rightarrow x=\pm4;y=\pm6;z=\pm10\)

13 tháng 7 2018

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(\Rightarrow xy=5k.7k\)

\(\Rightarrow140=35k^2\)

\(\Rightarrow k^2=4\)

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với k = 2 ta có :

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Với k = -2 ta có :

+) \(\frac{x}{5}=-2\Rightarrow x=-10\)

+) \(\frac{y}{7}=-2\Rightarrow y=-14\)

Vậy  \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)

b) Ta có :

\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

+) \(\frac{x}{2}=3\Rightarrow x=6\)

+) \(\frac{y}{5}=3\Rightarrow y=15\)

+) \(\frac{z}{7}=3\Rightarrow z=21\)

Vậy x = 6, y = 15 và z = 21

_Chúc bạn học tốt_

13 tháng 7 2018

a, x.y/5.7=140/35

=140/35=4

x/5=4/7

x/7=5/4

x.7=5.4

x.7=20

x=20;7

x=20/7

b,chịu

tk thì tk ko tk cx đc

15 tháng 10 2020
https://i.imgur.com/AAqe6HH.jpg
16 tháng 10 2020

\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{6}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Và x + y + z = 46

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{46}{31}\)

Ta có:

\(\frac{x}{15}=\frac{46}{31}\Rightarrow x=\frac{46}{31}.15=\frac{690}{31}\)

\(\frac{y}{10}=\frac{46}{31}\Rightarrow y=\frac{46}{31}.10=\frac{460}{31}\)

\(\frac{z}{6}=\frac{46}{31}\Rightarrow z=\frac{46}{31}.6=\frac{276}{31}\)

Vậy \(x=\frac{690}{31};y=\frac{460}{31};z=\frac{276}{31}\)

3 tháng 11 2017

Ta có: \(\dfrac{y}{5}=\dfrac{2y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x-y+z}{2-5+7}=\dfrac{x-y+z}{4}=\)\(\dfrac{x+2y-z}{5}\)

\(\rightarrow\dfrac{x-y+z}{x+2y-z}=\dfrac{4}{5}\)

15 tháng 3 2016

ho : B= x-y+z / x+2y -z va x/2 = y/5= z/7 va x+2y - z khac 0 

tìm x,y , z 

15 tháng 3 2016

mày vớ vẩn