Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=-3mx^2+2x-3\)
Hàm nghịch biến trên khoảng đã cho khi với mọi \(x\in\left(-3;0\right)\) ta có:
\(-3mx^2+2x-3\le0\)
\(\Leftrightarrow2x-3\le3mx^2\)
\(\Leftrightarrow\dfrac{2x-3}{3x^2}\le m\)
\(\Rightarrow m\ge\max\limits_{\left(-3;0\right)}\left(\dfrac{2x-3}{3x^2}\right)\)
Xét hàm \(f\left(x\right)=\dfrac{2x-3}{3x^2}\Rightarrow f'\left(x\right)=\dfrac{2\left(3-x\right)}{3x^3}< 0;\forall x\in\left(-3;0\right)\)
\(\Rightarrow f\left(x\right)>f\left(-3\right)=-\dfrac{1}{3}\)
\(\Rightarrow m\ge-\dfrac{1}{3}\)
Lời giải:
Từ điều kiện $M$ nằm trên cạnh $BC$ và \(MC=2MB\) suy ra \(\overrightarrow{MC}=2\overrightarrow {BM}\)
Gọi \(M=(a,b,c)\Rightarrow (-3-a,6-b,4-c)=2(a,b-3,c-1)\)
\(\left\{\begin{matrix} -3-a=2a\\ 6-b=2(b-3)\\ 4-c=2(c-1)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=-1\\ b=4\\ c=2\end{matrix}\right.\)
Do đó \(MA=\sqrt{29}\)
Vậy không có đáp án nào đúng
Anh (chị) vui lòng kiểm tra điều kiện của xA và xB giúp em ạ!
Từ đồ thị ta thấy \(f'\left(x\right)>0\) trên các khoảng \(\left(-1;1\right)\) và \(\left(3;+\infty\right)\)
\(f'\left(x\right)< 0\) trên \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)
\(\Rightarrow\) Hàm nghịch biến trên (1;3)
bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với
Ủa 2 kết quả giống nhau mà? Có sai chỗ nào đâu bạn?
Làm sao để biết nó bằng nhau vậy ạ..Mình calc x mà nó khác nhau
log2 2 vế ta có: x = 2log2x
<=> x - 2.log2x = 0
Đặt f(x) = x - 2.log2x
f'(x) = 1 - \(\dfrac{2}{x.ln2}\)
Dễ thấy f'(x) có 1 nghiệm duy nhất. Nên theo định lý Rolle: pt f(x) = 0 có tối đa 2 nghiệm phân biệt
Mà x = 2 và x = 4 là 2 nghiệm của pt f(x) = 0
Nên pt có tập nghiệm S = {2; 4}
Thi trắc nghiệm mà vẫn giải tự luận à
3.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
B đúng
4.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)
A đúng
1.
B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)
có cái gì đâu