Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{3}{\left(x+y\right)^2}=\dfrac{85}{3}\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=\dfrac{13}{3}\end{matrix}\right.\)
\(a=x+y\); \(b=x-y\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+b^2+\dfrac{3}{a^2}=\dfrac{85}{3}\\a+b+\dfrac{1}{a}=\dfrac{13}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(a+\dfrac{1}{a}\right)^2-6+b^2=\dfrac{85}{3}\\a+\dfrac{1}{a}=\dfrac{13}{3}-b\end{matrix}\right.\)
\(\Rightarrow3\left(\dfrac{13}{3}-b\right)^2-6+b^2=\dfrac{85}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}b=1\\b=\dfrac{11}{2}\end{matrix}\right.\)đến đây tự làm nha
b) ĐKXĐ: \(x,y\neq 0\).
Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).
Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).
Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).
Vậy...
a.
\(\left\{{}\begin{matrix}x^2+y^2=\dfrac{1}{2}\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2=\dfrac{1}{2}-x^2\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x^3+3x\left(\dfrac{1}{2}-x^2\right)=\dfrac{1}{2}\)
\(\Leftrightarrow4x^3-3x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
- Với \(x=-1\) thế vào pt đầu: \(1+y^2=\dfrac{1}{2}\Rightarrow y^2=-\dfrac{1}{2}\) (vô nghiệm)
- Với \(x=\dfrac{1}{2}\) thế vào pt đầu: \(\dfrac{1}{4}+y^2=\dfrac{1}{2}\Rightarrow y=\pm\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}x^2+y^2=\dfrac{1}{2}\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)
Dễ thấy x = 0 không phải nghiệm ta nhân tử mẫu phương trình đầu cho 3x thì được
\(\Leftrightarrow\left\{{}\begin{matrix}3x^3+3xy^2=\dfrac{3x}{2}\left(1\right)\\x^3+3xy^2=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)
Lấy (1) - (2) thì đơn giản rồi ha
Lời giải:
Lấy PT thứ nhất cộng phương trình thứ 2:
\(\Rightarrow 4(x+y)=\frac{1}{x^2}+\frac{1}{y^2}>0\Rightarrow x+y>0\)
Lấy PT thứ nhất trừ đi phương trình thứ 2:
\((3x+y)-(3y+x)=\frac{1}{x^2}-\frac{1}{y^2}\)
\(\Leftrightarrow 2(x-y)=\frac{y^2-x^2}{x^2y^2}\)
\(\Leftrightarrow (x-y)\left(2+\frac{x+y}{x^2y^2}\right)=0\)
Vì \(x+y>0\Rightarrow 2+\frac{x+y}{x^2y^2}>0\)
Do đó: \(x-y=0\Rightarrow x=y\). Thay vào pt thứ nhất:
\(4x=\frac{1}{x^2}\Rightarrow 4x^3=1\Rightarrow x=\sqrt[3]{\frac{1}{4}}=y\)
Đặt \(x+1=a;y^2=b\left(b\ge0;a\ne0\right)\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{5a}+\dfrac{3b}{5}=1\\\dfrac{3}{a}+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3a}+b=\dfrac{5}{3}\\\dfrac{3}{a}+b=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{3a}=-\dfrac{14}{3}\\\dfrac{3}{a}+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\y=\pm\sqrt{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-\dfrac{3}{2};\sqrt{3}\right);\left(-\dfrac{3}{2};-\sqrt{3}\right)\)
+) Bài bất đẳng thức:
\(\dfrac{2017a-a^2}{bc}=\dfrac{\left(a+b+c\right)a-a^2}{bc}=\dfrac{ab+ca}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{2017b-b^2}{ca}=\dfrac{b}{a}+\dfrac{b}{c}\left(2\right)\\\dfrac{2017c-c^2}{ab}=\dfrac{c}{a}+\dfrac{c}{b}\left(3\right)\end{matrix}\right.\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{bc}+\dfrac{2017c-c^2}{ab}=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\sqrt{2}\left(\sum\sqrt{\dfrac{2017-a}{a}}\right)=\sqrt{2}\left(\sum\sqrt{\dfrac{\left(a+b+c\right)-a}{a}}\right)=\sqrt{2}\left(\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}+\sqrt{\dfrac{a+b}{2}}\right)\)
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge\sqrt{2}\left(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}\right)\)
*Có: \(\sqrt{2.\dfrac{a+b}{c}}+\sqrt{2.\dfrac{b+c}{a}}+\sqrt{2.\dfrac{c+a}{b}}\le\dfrac{2+\dfrac{a+b}{c}}{2}+\dfrac{2+\dfrac{b+c}{a}}{2}+\dfrac{2+\dfrac{c+a}{b}}{2}=3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)
Ta chỉ cần chứng minh:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)
hay \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\) (cái này chị tự chứng minh nhé)
ĐK: \(x\ne0\) ; \(y\ne0\)
Hệ phương trình tương đương với:
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=8\end{matrix}\right.\)
Đặt \(S=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)\)
\(P=\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\)
Mà \(S^2\ge4P\)
Ta có: \(\left\{{}\begin{matrix}S=4\\S^2-2P=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=4\\P=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)