Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
\(1,HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)+\left(\dfrac{1}{y}-\dfrac{1}{x}\right)=0\\2y=x^3+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\dfrac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow2y=y^3+1\Leftrightarrow y^3-2y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{-1+\sqrt{5}}{2}\\y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;0\right);\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right);\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right)\)
\(2,HPT\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x^2+y^2\right)}+2\sqrt{xy}=16\\x+y+2\sqrt{xy}=16\end{matrix}\right.\\ \Leftrightarrow\sqrt{2\left(x^2+y^2\right)}=x+y\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\\ \Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\)
Vậy \(\left(x;y\right)=\left(4;4\right)\)
\(3,\text{Sửa: }\left\{{}\begin{matrix}\sqrt{x^2+3}+\left|y\right|=\sqrt{3}\left(1\right)\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\left(2\right)\end{matrix}\right.\)
Ta thấy \(\sqrt{x^2+3}\ge\sqrt{3};\left|y\right|\ge0\Leftrightarrow VT\left(1\right)\ge\sqrt{3}=VP\left(1\right)\)
Dấu \("="\Leftrightarrow x=y=0\)
Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5}+0=\sqrt{5}\left(tm\right)\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)
\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
a. ĐKXĐ: ..
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)
b.
Thế pt trên xuống dưới:
\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)
\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)
\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)
Thế vào pt đầu ...
Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)
\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)
Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :
\(\sqrt{4y}+\sqrt{y+1}=2\)
\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)
Giải pt thu được (x;y)
Th2:x=-y thay vào \(\left(\circledast\right)\), ta có
\(\sqrt{-2x}+\sqrt{y+1}=2\)
Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)
Vậy ....
2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)
\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)
Th1:\(x=y+1\)
Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)
Th2:\(x=-y^2\)thay vào ta có:
\(\sqrt{-y^2}+\sqrt{y+1}=2\)
vì \(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt
\(\Rightarrow\)Pt vô nghiệm
\(1,ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2y^2=y^3+1\\2x^2y^2=x^3+1\end{matrix}\right.\\ \Leftrightarrow x^3+1=y^3+1\\ \Leftrightarrow x^3=y^3\Leftrightarrow x=y\)
Thay vào PT 1
\(\Leftrightarrow2x^4=x^3+1\\ \Leftrightarrow2x^4-x^3-1=0\\ \Leftrightarrow2x^4-2x^3+x-1=0\\ \Leftrightarrow\left(2x^3+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^3=-\dfrac{1}{2}\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt[3]{-\dfrac{1}{2}}\\x=y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\sqrt[3]{-\dfrac{1}{2}};\sqrt[3]{-\dfrac{1}{2}}\right);\left(1;1\right)\)
\(2,ĐK:x,y\ge1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+\sqrt{y-1}=\dfrac{1}{2}\\2\left(y-1\right)+\sqrt{x-1}=\dfrac{1}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}2a^2+b=\dfrac{1}{2}\\2b^2+a=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow2\left(a-b\right)\left(a+b\right)-\left(a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(2a+2b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a+2b=1\end{matrix}\right.\)
Với \(a=b\Leftrightarrow x-1=y-1\Leftrightarrow x=y\)
Thay vào \(PT\left(1\right)\Leftrightarrow2x+\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2\sqrt{x-1}=5-4x\)
\(\Leftrightarrow4x-4=25-40x+16x^2\\ \Leftrightarrow16x^2-44x+29=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y=\dfrac{11+\sqrt{5}}{8}\left(tm\right)\\x=y=\dfrac{11-\sqrt{5}}{8}\left(tm\right)\end{matrix}\right.\)
Với \(2a+2b=1\Leftrightarrow b=\dfrac{1}{2}-a\Leftrightarrow\sqrt{y-1}=\dfrac{1}{2}-\sqrt{x-1}\)
Thay vào \(PT\left(1\right)\Leftrightarrow2x+\dfrac{1}{2}-\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2x-2=\sqrt{x-1}\)
\(\Leftrightarrow4x^2-8x+4=x-1\\ \Leftrightarrow4x^2-9x+5=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\Rightarrow y=1\left(tm\right)\\x=1\Rightarrow y=\dfrac{5}{4}\left(tm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\dfrac{11+\sqrt{5}}{8};\dfrac{11+\sqrt{5}}{8}\right);\left(\dfrac{11-\sqrt{5}}{8};\dfrac{11-\sqrt{5}}{8}\right);\left(\dfrac{5}{4};1\right);\left(1;\dfrac{5}{4}\right)\)