Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Hệ thứ nhất kì quặc thật:
\(\Leftrightarrow\sqrt{y^2+xy}+\sqrt{x+y}=\sqrt{x^2+y^2}+2\)
\(\Leftrightarrow\sqrt{x^2+y^2}-\sqrt{y^2+xy}=\sqrt{x+y}-2\)
\(\Leftrightarrow\dfrac{x\left(x-y\right)}{\sqrt{x^2+y^2}+\sqrt{y^2+xy}}=\dfrac{x+y-4}{\sqrt{x+y}+2}\)
\(\Rightarrow\left(x-y\right)\left(x+y-4\right)=\left(\dfrac{\sqrt{x^2+y^2}+\sqrt{y^2+xy}}{x\sqrt{x+y}+2x}\right)\left(x+y-4\right)^2\ge0\) (1)
\(2.\dfrac{x}{2}\sqrt{y-1}+2.\dfrac{y}{2}\sqrt{x-1}\le\dfrac{x^2}{4}+y-1+\dfrac{y^2}{4}+x-1\)
\(\Rightarrow\dfrac{x^2+4y-4}{2}\le\dfrac{x^2+y^2+4x+4y-8}{4}\)
\(\Leftrightarrow x^2-y^2+4y-4x\le0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)\le0\) (2)
(1);(2) \(\Rightarrow\left(x-y\right)\left(x+y-4\right)=0\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=2\)
b.
\(x^3-x^2y+2y^2-2xy=0\)
\(\Leftrightarrow x^2\left(x-y\right)-2y\left(x-y\right)=0\)
\(\Leftrightarrow\left(x^2-2y\right)\left(x-y\right)=0\)
\(\Leftrightarrow y=x\) (loại \(x^2-2y=0\) do ĐKXĐ \(x^2-2y-1\ge0\))
Thế vào pt dưới
\(2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\)
\(\Leftrightarrow2\sqrt{x^2-2x-1}+\dfrac{x^3-14-\left(x-2\right)^3}{\sqrt[3]{\left(x^3-14\right)^2}+\left(x-2\right)\sqrt[3]{x^3-14}+\left(x-2\right)^2}=0\)
\(\Leftrightarrow\sqrt[]{x^2-2x-1}\left(2+\dfrac{6\sqrt[]{x^2-2x-1}}{\sqrt[3]{\left(x^3-14\right)^2}+\left(x-2\right)\sqrt[3]{x^3-14}+\left(x-2\right)^2}\right)=0\)
\(\Leftrightarrow\sqrt{x^2-2x-1}=0\)
Đề là: \(3\left(2y^2+1\right)\) hay \(3\left(2y^2+3\right)\) thế