K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Câu 5:

$\frac{20}{\sqrt{5}}=\frac{20\sqrt{5}}{5}=4\sqrt{5}$

Câu 6:

\(\frac{3}{\sqrt{5}+\sqrt{2}}+\frac{3}{\sqrt{5}-\sqrt{2}}=3.\frac{\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}=3.\frac{2\sqrt{5}}{5-2}=2\sqrt{5}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Câu 7:

1. ĐKXĐ: $x\neq 1; x\geq 0$

\(A=\left[\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+1}+1\right]:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}-1}-1\right]=(\sqrt{x}+1):(\sqrt{x}-1)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

2.

\(A< 1\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{2}{\sqrt{x}-1}<0\)

\(\Leftrightarrow \sqrt{x}-1<0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ suy ra $0\leq x< 1$

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

Kẻ $OH\perp AB$ thì $OH=1$ (cm)

Áp dụng định lý Pitago cho tam giác $OHA$ vuông:

$AH=\sqrt{OA^2-OH^2}=\sqrt{3^2-1^2}=2\sqrt{2}$ (cm)

$OA=OB$ nên tam giác $OAB$ cân tại $O$. Do đó đường cao $OH$ đồng thời là đường trung tuyến 

$\Rightarrow AB=2AH=4\sqrt{2}$ (cm)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Hình vẽ:

19 tháng 9 2021

\(a,\) Hàm số bậc nhất \(\Leftrightarrow2m-3\ne0\Leftrightarrow m\ne\dfrac{3}{2}\)

\(b,\) Để \(\left(d\right)\) tạo với Ox một góc nhọn thì:

\(2m-3>0\Leftrightarrow m>\dfrac{3}{2}\)

\(c,m=3\Leftrightarrow y=3x+2\)

\(x=0\Leftrightarrow y=2\Leftrightarrow A\left(0;2\right)\\ x=1\Leftrightarrow y=5\Leftrightarrow B\left(1;5\right)\)

 

 

Câu 1: C

Câu 2: C

Câu 3: D

Câu 4: C

Câu 5:B

Câu 6: B

4 tháng 1 2022

Câu 1: C

Câu 2: C

Câu 3: D

Câu 4: C

Câu 5:B

Câu 6: B

29 tháng 3 2022

D

29 tháng 3 2022

có bài làm tự luận k ạ

31 tháng 10 2021

Câu 1:

a: \(\sqrt{9\cdot25}=3\cdot5=15\)

b: \(=3\sqrt{2}\cdot\sqrt{2}+4\sqrt{2}\cdot\sqrt{2}-5\sqrt{2}\cdot\sqrt{2}\)

=6+8-10

=4