Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình ko biết rất xin lỗi
ai tích mình tíc lại
ai tích mình tích lại
aih lại tích mình tích lại
\(x^4+x^2-20=0\)
\(\Leftrightarrow x^4-4x^2+5x^2-20=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+5\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^2+5=0\end{cases}}\)loại \(x^2+5=0\)vì giải trên tập số thực nên x^2+5>0
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(S=\left\{2;-2\right\}\)
x ^ 4 + x ^ 2 - 20 = 0
(x ^ 2 + 5) (x ^ 2 - 4) = 0
(x ^ 2 + 5) (x + 2) (x - 2) = 0
x ^ 2 + 5 = 0
x ^ 2 = -5
x = ± √-5
x = ± i√5
x + 2 = 0
x = -2
x - 2 = 0
x = 2
x = {-i√5, i√5, -2, 2}
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
1. đặt t = \(\sqrt{\dfrac{2x+2}{x+2}}\) \(\left(t\ge0\right)\) \(\Rightarrow\dfrac{1}{t}=\sqrt{\dfrac{x+2}{2x+2}}\)
ta có: \(t-\dfrac{1}{t}=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{t^2-1}{t}=\dfrac{7}{12}\)
\(\Leftrightarrow12\left(t^2-1\right)=7t\)
\(\Leftrightarrow12t^2-7t-12=0\)
\(\Leftrightarrow\left(4t+3\right)\left(3t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4t+3=0\\3t-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{3}{4}\left(L\right)\\t=\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\dfrac{2x+2}{x+2}}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{16}{9}\)
\(\Leftrightarrow x=7\)
vậy x = 7 là nghiệm của pt
bài 1: đặt ẩn hoặc liên hợp. gợi ý :x=7
bài 2: tui làm r` mà quên link bn vào đây mà tìm nè Góc học tập của Ace Legona | Học trực tuyến
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
Thần Đồng Đất Việt ko fai 90/x-90/x+10=45/60
\(\frac{90}{x}-\frac{90}{x}+10=\frac{45}{60}\) Á sai đề chắc